期刊文献+

支持向量机在云检测中的应用 被引量:7

Application of support vector machines in cloud detection
下载PDF
导出
摘要 针对地球观测系统/中分辨率成像光谱仪影像资料中的云检测工作,提出了基于支持向量机SVMs(support vector machines)的遥感影像分类方法。分析了云检测过程中的特征提取和选择,建立了基于支持向量机的遥感影像分类模型,并针对陆地、海洋2种不同的下垫面进行了云检测试验。云检测结果中,云与陆地、水体、积雪准确地区分开来。结果表明,特征选择对云检测起到了积极的作用,同时也证明了支持向量机方法在遥感影像分类中的优势。 A new method of remote sensing image classification was introduced based on the support vector machines by using the images from earth observing system/moderate resolution imaging spectroradiometer. The process of feature selection during cloud detection was analyzed. The new method was established by building a model of remote sensing image classification based on SVMs that was used in different surfaces of land and sea images. Clouds were discriminated from land, water and snow in the preliminary results. The established scheme based on SVMs method proves to be effective in remote sensing image classification.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第2期191-194,共4页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家重点基础研究规划资助项目(2006CB400505) 国家自然科学基金资助项目(40675040)
关键词 支持向量机 中分辨率成像光谱仪 云检测 support vector machines MODIS(moderate resolution imaging spectroradiometer) cloud detection
  • 相关文献

参考文献10

  • 1师春香,瞿建华.用神经网络方法对NOAA-AVHRR资料进行云客观分类[J].气象学报,2002,60(2):250-255. 被引量:37
  • 2VAPNIK V N.Nature of Statistical Learning Theory[M].New York:John-Wiley,1995.
  • 3CHRISTOPHER J c B.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,12(2):121-167.
  • 4BEN D E.A precaution regarding cirrus cloud detec-tion from airborne imaging spectrometer data using 1.38 water vapor band[J].Remote Sens Environ,1994,50(4):346-350.
  • 5DERRIENM L G H.Cloud classification extracted from AVHRR and GOES imagery[R].Paris:Meteo France SCEM Centre de Meteorologic Spatiale,1998.
  • 6HUTCHISON K D,ETHERTON B J,TOPPING P C,et al.Cloud top phase determination from the fu-sion of signatures in daytime AVHRR imagery and HIRS data[J].International Journal of Remote Sens-ing,1997,18(15):3245-3262.
  • 7BAUM T Q.A grouped threshold approach for scene identification in AVHRR imagery[J].Journal of At-mospheric and Oceanic Technology,1996,16(3):793-799.
  • 8PLATT J.Fast training of SVMs using sequential minimal optimization[C].Advances in kernel meth-ods:Support Vector Learning.Cambridge:MIT Press,1999.
  • 9JOACHIMS T.Making large-scale SVM learning practical[C].Advances in kernel methods:Support Vector Learning,Cambridge:MIT Press,1999.
  • 10CHIH W H,CHIH C C,CHIH J L.A practical guide to support vector classification[EB/OL].http://WWW.csie.ntu.edu.tw/~cjlin.(2007-07-18)[2007.08-21].

二级参考文献5

  • 1Michel Desbois, Genevieve Seze, Gerard Szejwach.Automatic classification of clouds on METEOSAT imagery: Application to high-level clouds. J Appl Meteor,1992,21: 401~412
  • 2Toassini C T.Objective Analysis of Cloud Fields. In: Proceedings of the 2nd Course on Satellite Meteorology of the Mediterraneann 1980. 73~78
  • 3Atkinson P M,Tatnall A R L.Introduction: Neural networks in remote sensing. Int J Remote Sensing, 1997,18(4): 699~710
  • 4Foody G M,Arora M K. Remote sensing image analysis using a neural network and knowledge-based processing. Int J Remote Sens, 1997,18(4): 811~828
  • 5Peak J E, Tag P M. Segmentation of satellite imagery using hierarchical thresholding and neural networks. J Appl Meteor,1994, 33: 605~616

共引文献36

同被引文献75

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部