期刊文献+

一种二型模糊可能性聚类红外图像分割算法 被引量:3

Type-2 fuzzy possibilistic clustering algorithm for infrared image segmentation
下载PDF
导出
摘要 提出了一种新的基于二型模糊可能性聚类的红外图像分割算法。针对受概率约束的模糊聚类算法和不受概率约束的可能性聚类算法在红外图像分割时存在的问题,采用二型模糊系统融合两种分割算法的隶属度函数,将隶属度函数看作一个区间型分布,而不是单独采用两种算法输出的确定模糊值。这种处理方式不但能有效抑制噪声及野值,而且能有效防止红外图像的过分割。实验仿真结果表明,该算法较传统聚类算法能获得更好的分割效果,可有效抑制噪声对目标区域分割的干扰。 A new algorithm for infrared image segmentation using type-2 fuzzy possibilistic clustering is proposed. Due to the problems of fuzzy clustering and possibilistic clustering in infrared image segmentation,the type-2 fuzzy is used to fuse the membership function of the two segmentation algorithms. The membership function is an interval distribu- tion. The determined fuzzy values which arc the output of the two algorithms are not adopted now. This processing method not only can suppress the noise and the outliers,but also can prevent the over segmentation of infrared image. The experimental results show the infrared image can be segment well by the proposed method compared with the con- ventional clustering method, and the noise and outliers are prevented to influence the segmentation of targets region.
出处 《激光与红外》 CAS CSCD 北大核心 2009年第7期780-783,共4页 Laser & Infrared
关键词 图像分割 可能性聚类 模糊聚类 二型模糊 image segmentation possibilistic clustering fuzzy clustering type'2 fuzzy
  • 相关文献

参考文献10

  • 1孙清伟,闫继涛.基于空间约束的模糊核聚类红外图像分割[J].激光与红外,2008,38(10):1066-1069. 被引量:3
  • 2Wei-bin Zhang,Huai-zhong Hu,Wen-jiang Liu.Rules extraction of interval type-2 fuzzy logic system based on fuzzy c-means clustering[C]//Fourth International Conference on Fuzzy Systems and Knowledge Discovery,2007:256-260.
  • 3张扬,王士同,韩斌.基于改进模糊聚类算法鲁棒的图像分割[J].中国图象图形学报,2008,13(5):911-917. 被引量:16
  • 4Pal R,Pal K,Keller M,et al.A possibilistic fuzzy cmeans clustering algorithm[J].IEEE Trans.on Fuzzy Systems,2005,13 (4):517-530.
  • 5Byung-in Choi,Frank Chung-Hoon Rhee.Interval type-2 fuzzy membership function generation methods for pattern recognition[J].Information Sciences,2008,to be published.
  • 6Jia Zeng,Zhi Qiang Liu.Type-2 fuzzy sets for pattern classification:a review[C]//Proceedings of the IEEE Symposium on Foundations of Computational Intelligence,2007:193-200.
  • 7Jia Zeng,Lei Xie,Zhi-Qiang Liu.Type-2 fuzzy Gaussian mixture models[J].Pattern Recognition,2008,41 (12):3636-3643.
  • 8陈健美,陆虎,宋余庆,宋顺林,徐景,谢从华,倪巍伟.一种隶属关系不确定的可能性模糊聚类方法[J].计算机研究与发展,2008,45(9):1486-1492. 被引量:23
  • 9Cheul Hwang,Frank Chung-Hoon Rhee.Uncertain fuzzy clustering:interval type-2 fuzzy approach to c-means[J].IEEE Trans.on Fuzzy Systems,2007,15 (1):107-120.
  • 10Hamid R T.Type Ⅱ fuzzy image segmentation[M]// Fuzzy Sets and Their Extensions:Representation,Aggregation and Models.2007:607-619.

二级参考文献23

  • 1刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 2余锦华,汪源源,施心陵.基于空间邻域信息的二维模糊聚类图像分割[J].光电工程,2007,34(4):114-119. 被引量:20
  • 3Wang F. Fuzzy classiflcation of remote sensing images [ J]. IEEE Tranactions on Geoscience and Remote Sensing, 1990, 28 (2): 194-201.
  • 4Cheng H D,Chen Y H,Jiang X H. Thresholding using two dimensional histogram and fuzzy entropy principle [J]. IEEE Tranactions on Image Processing, 2000, 9(4): 732-735.
  • 5Zhao M S, Fu A, Yan H. A technique of three-level thresholding based on probabilistic partition and fuzzy three-partition [ J]. IEEE Transactions on Fuzzy Systems, 2001, 9(3) : 469-479.
  • 6Bezdek J C. A convergence theorem for the fuzzy ISODATA clustering algorithms [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2 ( 1 ) : 1-8.
  • 7Rnnkler T A, Bezdek J C. Alternating cluster estimation: a new tool for clustering and function approximation [J]. IEEE Transactions on Fuzzy Systems, 1999, 7 (4): 377-393.
  • 8Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models [ J]. International Journal of Approximate Reasoning, 2003,32 (2) : 85-102.
  • 9Liew A W C, Yan H, Law N F. Image segmentation based on adaptive cluster prototype estimation [ J ]. IEEE Transactions on Fuzzy Systems, 2005, 13(4) : 444-453.
  • 10Krishnapuram R, Keler J M. A possibilistic approach to clustering [J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2) : 98-110.

共引文献39

同被引文献31

  • 1林爱英,贾芳,昝红英.基于二维直方图的改进的PCM聚类分割方法[J].湖北大学学报(自然科学版),2012,34(1):31-35. 被引量:2
  • 2刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C-均值算法的聚类分析[J].计算机工程与应用,2004,40(24):64-65. 被引量:28
  • 3陶文兵,刘李漫,田金文,柳健.采用递归门限分析的红外目标分割[J].光电工程,2004,31(10):46-49. 被引量:8
  • 4霍东民,刘高焕,骆剑承.基于PCM改进算法的遥感混合像元模拟分析[J].遥感学报,2005,9(2):131-137. 被引量:9
  • 5姚秀娟,彭晓乐,张永科.几种精确制导技术简述[J].激光与红外,2006,36(5):338-340. 被引量:20
  • 6Wu Jin,Li,Juan,Liu Jian,et al.Infrared image segmentation via fast fuzzy C-means with spatial information[C].International Conference on Robotics and Biomimetics,2004:742-745.
  • 7Mohamed N Ahmed,Sameh M Yamany,Nevin Mohamed,et al.A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE transactions on medical imaging,2002,21(3):193-199.
  • 8Xiaochun Yang,Weidong Zhao,Yufei Chen,et al.Image segmentation with a fuzzy clustering algorithm based on Ant-Tree[J].Signal Processing,2008,88(10):2453-2462.
  • 9Jianchao Fan,Min Han,Jun Wang.Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation[J].Pattern Recognition,2009,42(11):2527-2540.
  • 10Lin Zhu,Fu-lai Chung,Shitong Wang.Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2009,39(3):578-591.

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部