期刊文献+

一种基于部分样本类别判定的聚类分析方法 被引量:2

A Method of Clustering Analysis Based on Category Judgement by Part Samples
下载PDF
导出
摘要 针对传统聚类分析中,指标权重一般由专家直接给出,然后再在此基础上进行聚类分析的不足,提出了一种基于部分样本类别判定的聚类分析方法.首先对部分样本进行类别归属判定,然后利用类内聚类样本之间的距离应尽可能小的原理建立规划模型,通过"反推"的方式诱导出合理的权重信息,再据此进行样本聚类.该方法主要用于解决聚类样本较多,且聚类样本的指标权重难以显性确定情况下的聚类分析问题.最后给出的一个算例验证了所提方法的有效性. In view of that the conventional clustering analysis is based on such index weights that are generally given directly by the experts, a new method of clustering analysis is proposed on the basis of category judgement by part samples. Categorizing the part samples to judge them, a programming is developed on the principles that the distances between clustering samples in the same category should be shortened as possible. With the rational data of weights induced via counter-inference, the sample clustering is implemented. The method is mainly used to solve the problem of cluster analysis to which many samples are to be clustered and their index weights are difficult to determine explicitly. A numerical example is given to illustrate the effectiveness of the proposed method.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第7期1051-1054,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(70472032)
关键词 样本 类别判定 指标 权重 聚类 samples category judgement index weight clustering
  • 相关文献

参考文献10

  • 1Jacquet-Lagrese E,Siskos Y.Preference disaggregation:20 years of MCDA experience[J].European Journal of Operational Research,2001,130(2):233-245.
  • 2Zopounidis C,Doumpos M.Multi-criteria classification and sorting methods:a literature review[J].European Journal of Operational Research,2002,138(2):229-246.
  • 3Zopounidis C,Doumpos M.Multi-group discrimination using multi-criteria analysis:illustrations from the field of finance[J].European Journal of Operational Research,2002,139(2):371-389.
  • 4Mousseau V,Fiqueira J,Naux J P.Using assignment examples to infer category limits for the ELECTRE TRI method[J].Journal of Multi-criteria Decision Analysis,2002,11(1):29-43.
  • 5Beuthe M,Scannella G.Comparative analysis of UTA multicriteria methods[J].European Journal of Operational Research,2001,130(2):246-262.
  • 6Vania P,Ivan P.Comparison of clusters from fuzzy numbers[J].Fuzzy Sets and Systems,1998,97(1):75-81.
  • 7Cinquea L,Foresti G,Lombardi L.A clustering fuzzy approach for image segmentation[J].Pattern Recognition,2004,37(9):1797-1807.
  • 8黄辉,梁工谦,隋海燕.大规模定制产品族设计中的原理聚类研究[J].管理工程学报,2008,22(3):110-114. 被引量:7
  • 9于春海,樊治平.一种基于三角模糊数多指标信息的聚类方法[J].系统工程理论方法应用,2004,13(5):467-470. 被引量:4
  • 10张国权,李文立,杨件.基于最大离差和最大联合熵的多方案优选方法[J].运筹与管理,2007,16(4):12-18. 被引量:10

二级参考文献24

  • 1熊立华,王云峰,张柯.面向大规模定制的产品簇建模研究[J].工业工程,2005,8(1):71-74. 被引量:4
  • 2陈珽.决策分析[M].北京:科学出版社,1987..
  • 3Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data[J]. Fuzzy Sets and Systems, 1996,84:49-60.
  • 4Zadeh L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971,3:177.
  • 5Tamra S. Pattern classication based on fuzzy relations[J]. IEEE Transactions on Systems, Man and Cybernetics, 1971,1(1):217.
  • 6Yang M S. On a class of fuzzy classification maximum likelihood procedures [J]. Fuzzy Sets and Systems,1993,57:365.
  • 7Pezdrey W. Condition fuzzy C-means[J]. Recognition Letters, 1996,17: 625.
  • 8Yager R R, Detyniecki M, Bouchon-Meunier B. A context-dependent method for ordering fuzzy numbers using probabilities [J]. Information Sciences,2001,138:237-255.
  • 9Vania P, Ivan P. Comparison of clusters from fuzzy numbers[J]. Fuzzy Sets and Systems, 1998,97:75-81.
  • 10高英仪,杨纶标.模糊数学·原理及应用[M].广州:华南理工大学出版社,2003.

共引文献18

同被引文献37

  • 1徐选华,陈晓红.基于矢量空间的群体聚类方法研究[J].系统工程与电子技术,2005,27(6):1034-1037. 被引量:42
  • 2胡立辉,罗国松.改进的基于矢量空间的群体聚类算法[J].系统工程与电子技术,2007,29(3):472-474. 被引量:3
  • 3Liu F, Zhang W G, Zhang L H. Consistency analysis of triangular fuzzy reciprocal preference relations[J]. European J of Operational Research, 2014, 235(3): 718- 726.
  • 4Xu Z S. Incomplete linguistic preference relations and their fusion[J]. Information Fusion, 2006, 7(3): 331-337.
  • 5Fan Z P, Xiao S H, Hu G E An optimization method for integrating two kinds of preference information in group decision-making[J]. Computers & Industrial Engineering, 2004, 46(2): 329-335.
  • 6Xu X Z. A note on the subjective and objective integrated approach to determine attribute weights[J]. European J of Operational Research, 2004, 156(2): 530-532.
  • 7Chou C H, Liang G S, Chang H C. A fuzzy AHP approach based on the concept of possibility extent[J]. Quality & Quantity, 2013, 47(1): 1-14.
  • 8Ma J, Fan Z P, Huang L H. A subjective and objective integrated approach to determine attribute weights[J]. European J of Operational Research, 1999, 112(2): 397- 404.
  • 9Fan Z P, Ma J, Zhang Q. An approach to multiple attribute decision making based on fuzzy preference information on alternatives[J]. Fuzzy Sets and Systems, 2002, 131(1): 101- 106.
  • 10Vandani B, Mousavi SM, Tavakkoli-Moghaddam R. Group decision making based on novel fuzzy modified TOPSIS method[J]. Application Mathematical Modeling, 2011, 35(9): 4257-4269.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部