期刊文献+

基于优化文档频和信息量的特征选择方法 被引量:2

Feature Selection Method Based on Optimal Document Frequency and Information Quantity
下载PDF
导出
摘要 针对文本分类中几种典型的特征选择方法存在的不足,提出基于优化文档频和信息量的特征选择方法。该方法首先使用优化的文档频方法进行特征选择以降低文本向量的稀疏性,然后利用所提属性的约简算法消除冗余,从而获得较具代表性的特征子集。实验结果表明:该方法同3种经典特征选择方法相比,"互信息"和"统计量"以及"信息增益"都要好。 We firstly analyzed several classic feature selection methods and summarized their deficiencies, and then combined word frequency with document frequency and presented an optimal document frequency method, next, introduced rough sets and presented an attribute reduction algorithm based on information quantity, finally, combined the attribute reduction algorithm with the optimal document frequency method and proposed a comprehensive feature selection method. The comprehensive method firstly uses the optimal document frequency method to select feature to reduce the sparsity of feature spaces, and then uses the attribute reduction algorithm to eliminate redundancy, so can acquire the feature subset which are more representative. Experimental results show that the comprehensive method is better than mutual information, chi-square statistic and information gain which are three best conventional feature selection measures.
作者 张韬 朱颢东
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2009年第4期363-367,共5页 Journal of University of Jinan(Science and Technology)
基金 四川省科技计划(2008GZ0003) 国家重点基础研究发展规划(973-2004CB318003) 中国科学院知识创新工程重要方向资助(KJCX-YW-S02)
关键词 特征选择 词频 文档频 粗糙集 信息量 属性约简 feature selection word frequency document frequency rough set information quantity attribute reduction
  • 相关文献

参考文献9

二级参考文献33

  • 1曾雪强,王明文,陈素芬.一种基于潜在语义结构的文本分类模型[J].华南理工大学学报(自然科学版),2004,32(z1):99-102. 被引量:27
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:96
  • 3寇莎莎,魏振军.自动文本分类中权值公式的改进[J].计算机工程与设计,2005,26(6):1616-1618. 被引量:25
  • 4邹娟,周经野,邓成,刘玲.基于多重启发式规则的中文文本特征值提取方法[J].计算机工程与科学,2006,28(8):78-80. 被引量:3
  • 5Yang Yiming, Pederson Jan O. A comparative study on feature selection in text categorization [A]. Proceedings of the 14th International Conference on Machine learning[C]. Bled: Morgan Kaufmann, 1997: 258-267.
  • 6Liu Tao, Liu Shengping, Chen Zheng. An evaluation on feature selection for text clustering [A]. Proceedings of the 20th International Conference on Machine learning[C]. Washington DC:2003.
  • 7Yang Yiming,Pederson J O.A Comparative Study on Feature Selection in Text Categorization [A].Proceedings of the 14th International Conference on Machine learning[C].Nashville:Morgan Kaufmann,1997:412-420.
  • 8Y.Yang.Noise reduction in a statistical approach to text categorization[A].Proceedings of the 18th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR95)[C].Seattle:ACM Press,1995:256-263.
  • 9Thorsten Joachims,Text Categorization with Support Vector Machines:Learning with Many Relevant Features[A],In:European Conferrence on Machine Learning (ECML)[C].Berlin:Springer,1998,137-142.
  • 10HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..

共引文献314

同被引文献21

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部