期刊文献+

分数金融市场中的下出局买权定价研究

On Down-and-out Call Option Pricing in Fractional Financial Market
下载PDF
导出
摘要 布朗运动作为Black-Scholes模型的初始假定,一直受到金融异象的质疑。分数布朗运动虽然对此进行了补救,却因本质上不是半鞅给随机计算带来困难。本文假定标的资产价格服从几何分数布朗运动,利用风险中性测度下的拟鞅(quasi-martingale)定价方法解出了分数Black-Scholes公式,最后在分数布朗运动环境中对下出局买权进行了定价。结果表明,与标准期权价格相比,分数期权价格要同时取决于到期日和Hurst参数H。 Brownian motion, as the basic hypothesis of Blaek-Scholes Model, has been questioned by financial heteromorphism. Fractional Brownian motion could modify it, but that produced the difficulties in stochastic computation for it was not a semi-martingale. The paper assumes that price of assets is subject to fractional Brownian motion. Based on risk neutral measure, the paper solves fractional Black-Seholes equation and gives the down-and-out call option pricing in a fractional Brownian motion environment by the method of quasi-martingale pricing. The results show that, compared with standard option price, fractional option price depends on the maturity time and Hurst parameter H.
作者 赵巍
出处 《天津商业大学学报》 2009年第4期33-37,共5页 Journal of Tianjin University of Commerce
关键词 分数布朗运动 拟鞅定价 分数Black—Scholes模型 下出局买权 fractional Brownian motion quasi-martingale pricing fractional Blaek-Scholes Model down-and-out call option
  • 相关文献

参考文献11

  • 1Bachelier L. Theory of Speculation( Translation of 1900 French edition) [ C ]//Cootrter P H. The Random Character of Stock Market Prices. Cambridge : The MIT Press, 1964 : 17 - 78.
  • 2Sumuelson P A. Rational Theory of Warrant Pricing[ J ]. Industrial Management Review, 1965,6 ( 2 ) : 13 - 31.
  • 3Osborne M F M. Brownian Motion in the stock market[ J ]. Operations Research, 1959,7 ( 2 ) : 145 - 173.
  • 4Mandelbrot B B, Van Ness J W. Fractional Brownian Motion, Fractional Noises and Application [ J]. SIAM Review, 1968,10 (4) :422 -437.
  • 5Lin S J. Stochastic Analysis of Fractional Brownian Motion [J]. Stochastics and Stochastics Report, 1995,55 ( 1 ) : 121 - 140.
  • 6Roger L C G. Arbitrage with Fractional Brownian Motion [ J ]. Mathematical Finance, 1997,7 ( 11 ) :95 - 105.
  • 7Deereusefond L, Ustunel A S. Stochastic Analysis of the Fractional Brownian Motion[ J]. Potential Analysis, 1999,10 ( 2 ) : 177 - 214.
  • 8Hu Yaozhong,Oksendal B. Fractional White Noise Calculus and Application to Finance[ J]. Infinite Dimensional Analysis, Quantum Probability and Related Topics,2000,6 (1) : 1 -32.
  • 9Necula C. Option Pricing in a Fractional Brownian Motion Environment[ EB/OL]. [2008 - 03 - 10]. http//www, dofin, ase. ro/.
  • 10刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50

二级参考文献20

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部