期刊文献+

一种新型的基于密度-网格的自适应免疫聚类算法 被引量:1

下载PDF
导出
摘要 本文分析两种典型算法aiNet和ARIA,进而提出了一种新型的基于密度-网格的自适应免疫聚类算法AICDG。与现有算法相比,能有效处理大量高维数据聚类、具有更高的收敛速度。
出处 《福建电脑》 2009年第8期83-83,54,共2页 Journal of Fujian Computer
  • 相关文献

参考文献3

二级参考文献20

  • 1Liu H, Motoda H. Instance Selection and Construction for Data Mining. New York: Kluwer Academic Publishers, 2001.3-20.
  • 2Takashi F, Akio D. A Study of data reduction method with data accuracy for triangle data. In: Barolli L, ed. Proc. of the 1 lth Int'l Conf. on Parallel and Distributed Systems. Washington: IEEE Computer Society, 2005. 210-213.
  • 3Charu CA. An efficient subspace sampling fi'amework for high-dimensional data reduction, selectivity estimation, and nearest-neighbor search. IEEE Trans. on Knowledge and Data Engineering, 2004,16(10): 1247-1262.
  • 4Lynch RS, Willetl P K. A theoretical performance analysis of the Bayesian data reduction algorithm. In: Proc. of the 2005 IEEE Int'I Symposium on Systems, Man, and Cybernetics. Piscataway: IEEE Systems, Man, and Cybernetics Society, 2005. 330-335.
  • 5Tahani H, Plummer B, Hemamalini NS. A new data reduction algorithm for pattern classification. In: Proc. of the 1996 IEEE lnt'l Conf. on Acoustics, Speech and Signal Processing. Piscataway: IEEE Signal Processing Society, 1996. 3446-3449.
  • 6Cano JR, Herrera F, Lozano M. Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study. IEEE Trans. on Evolutionary Computation, 2003,7(6):561-575.
  • 7Liu H, Motoda H. Feature Selection for Knowledge Discovery and Data Mining. New York: Kluwer Academic Publishers, 1998.
  • 8Liu H, Motoda H. On issues of instance selection. Data Mining and Knowledge Discovery, 2002,6(2):115-130.
  • 9Cano JR, Herrera F, Lozano M. On the combination of evolutionary algorithm and stratified strategies for training set selection in data mining. Applied Soft Computation, 2006,6(3):323-332.
  • 10Hart PE. The condensed nearest neighbor rule. IEEE Trans. on Information Theory, 1968,IT-14(3):515-516.

共引文献30

同被引文献21

  • 1单世民,邓贵仕,何英昊.一种基于网格和密度的微粒群混合聚类算法[J].计算机科学,2006,33(11):164-165. 被引量:3
  • 2刘敏娟,柴玉梅,张西芝.基于相似度的网格聚类算法[J].计算机工程与应用,2007,43(7):198-201. 被引量:12
  • 3孙玉芬,卢炎生.一种基于网格方法的高维数据流子空间聚类算法[J].计算机科学,2007,34(4):199-203. 被引量:8
  • 4韩家炜.数据挖掘--概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001.
  • 5Jain A K,Murty M N,Flynn P J.Data Clustering:A Review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 6曾蒙福.基于自适应网格的聚类算法及在信息提取中的应用研究[D].福州:福州大学,2005.
  • 7Wang W,Yang J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C]∥In:Proceedings of the 23rd VLDB Conference.Athens,Greece:[s.n.],1997:186-195.
  • 8Sheikholeslami G,Chatterjee S,Zhang A.WaveCluster:A Multi-Resolution Clustering Approach for Very Large Spatial Databases[C]∥In:Proceedings of the 24th VLDB Conference.New York,USA:[s.n.],1998:428-439.
  • 9Agrawal R,Gehrke J,Gunopulos D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C]∥In:Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data.[s.l.]:[s.n.],1998:94-105.
  • 10Hsu Chih-Ming,Chen Ming-Syan.Subspace clustering of high dimensional spatial data with noises[C]∥PAKDD 2004.[s.l.]:[s.n.],2004:31-40.

引证文献1

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部