期刊文献+

基于贪心策略的混合遗传算法在TSP中的实现 被引量:3

Hybrid Genetic Algorithm Based on Strategy of Greedy for TSP
下载PDF
导出
摘要 由于标准遗传算法初始种群是随机产生的,可能导致算法的收敛速度较低,并陷入局部最优解.为了解决这一问题,提出了一种改进的遗传算法.改进后的遗传算法先用贪心算法产生初始种群,使算法能够更快地达到最优解.选择操作时采用竞标赛方法,在每代进化结束后立即采取了末尾淘汰机制,从而使适应度高的个体被选中的概率增大.并用模拟退火算法改善其局部搜索,通过仿真实验可以看到,提出的邻近倒位变异以及新的非零递减自适应函数可以进一步提高算法的运行效率. Because of the randomicity created by the initial population of simple genetic algorithm, the constringency speed of the algorithm may be relatively low, and sometimes fall in local optimized result. An advanced genetie algorithm is introduced in order to solve the problem. By adopting greedy algorithm to the production of initial population, the algorithm can reach the best result quickly. By adopting the way of the tournament selection and the mechanism for washing out worst after every generation evolution, the proba-bility of selecting the individual with good fitness is heightened. And introducing simulated anneaing algorithm improves the local search condition. A adjacent reversal operation and nonzero descending self-adaptation function are simultaneously introduced,which is proved to be effective by the simulation.
出处 《兰州交通大学学报》 CAS 2009年第3期58-61,共4页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(10661007) 兰州交通大学青蓝工程资助项目
关键词 旅行商问题 遗传算法 智能优化 贪心策略 TSP genetic algorithm intelligent optimization strategy of greedy
  • 相关文献

参考文献6

  • 1王晓东.计算机算法设计与分析[M].北京:电子工业出版社,2006.
  • 2周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2005.
  • 3曾福香,吕继锋,廖林如,孙启国.基于遗传算法和模拟退火算法的制造企业伙伴选择[J].兰州交通大学学报,2005,24(4):53-55. 被引量:3
  • 4Oliver L M.A study of permutation crossover operators on the traveling salesman problem[R]//Proc.of 2ndInt.Conf.on Genetic Algorithms.Lawrence Erlbaum Associates,1987:224-230.
  • 5杨丽娜,刘刚,王秋生.一种改进的遗传算法及其应用[J].郑州大学学报(工学版),2005,26(3):98-101. 被引量:7
  • 6Scott M,Thede.An introduction to genetic algorithms[J].Journal of Computing Sciences in Colleges,2004,20(1):61-65.

二级参考文献7

  • 1郭卉.改进遗传算法在牵引变压器优化设计中的应用[J].中国电机工程学报,2005,25(4):119-123. 被引量:22
  • 2Nahel R N, Dove R.21st Century Manufacturing Enterprise Strategy:An Industry-Led View[R].Lacocco Institute,Lehigh University,Bethehem PA,1991.
  • 3Noaker P M. The Search for Agile[J].Manufacturing Engineering,1994,11:40-43.
  • 4周明 孙树栋.遗传算法原理及应用[M].国防工业出版社,2001..
  • 5WANG S T, YE L Q, MALIK O P. Intelligent networked (N + M) fault tolerant systems for hydropower station [J].hydroelectric energy,1999,17(1): 66 - 72.
  • 6王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2001.18-86.
  • 7王生铁,叶鲁卿,邴凤山.水电站(N+M)容错系统可靠性分析[J].水电能源科学,1998,16(1):46-50. 被引量:2

共引文献64

同被引文献21

  • 1俞一,沈灏.背包问题的一个k阶优化遗传算法[J].杭州电子科技大学学报(自然科学版),2007,27(4):92-94. 被引量:3
  • 2蔡之华,彭锦国,高伟,魏巍,康立山.一种改进的求解TSP问题的演化算法[J].计算机学报,2005,28(5):823-828. 被引量:60
  • 3王劲飞,陈琎,魏巍,李振华.基于改进郭涛算法的TSP问题求解[J].计算机工程与设计,2006,27(5):744-745. 被引量:5
  • 4周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 5周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72
  • 6Adam Slowik, and Miehal Bialko. Training of artificial neural net- works using differential evolutional algorithm [ C ]. 2008 Conference on Human System Interaction, Krakow, Poland . May 25-27,2008. University of Information Technology and Management , 2008:60 - 65.
  • 7[ EB/OL ]. http://elib. zib. de/pub/Packages/mp-testdata/tsp/ tsplib/tsp/.
  • 8Guo Tao, Miehalewiez Z. Evolutionary algorithms for the TSP [C]//Eiben A E, et al. , eds. Proceedings of the 5th parallel Problem Solving from Nature Conference. Lecture Notes in Computer Science 1498. Berlin : Springer, 1998 : 803-812.
  • 9Larranaga P, Lozano J. A Estimation of Distribution Algo- rithms: A New Tool for Evolutionary Computation [M]. Dor- drecht: Kluwer Academic Publishers, 2002.
  • 10Jevemy S, Bonet D, Charles L, et al. MIMIC: Finding optima by estimating probability densities[C]//Advances in Neural Infor- mation Processing Systems Cambridge. MIT Press, 1997: 424- 430.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部