摘要
在前人研究的基础上,对块数为m×n、阶数为m r×ns的块-Toep litz矩阵T提出利用推广的Schur算法,通过对TTT的位移结构表示并结合Hyperbolic Householder变换对生成子矩阵作用,得到QR分解中上三角矩阵R的一种快速算法.在工程应用中采用一定近似,计算量可以达到O(ns3),较传统的Schur算法的计算量大大减小.
In the paper, on the basis of their predecessors, a fast algorithm for the upper triangular matrix R of QR decomposition of T ( which was m × n block-Toeplitz matrix with r × s rectangular blocks) using only 0( ns^3 ) multiplication was presented, where we got R by computing displacement structure of T^TT, and used the Schur algorithm and combined with Hyperbolic Householder transformation. Compared with the traditional method of Schur algorithm, we greatly reduced the amount of computation.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2009年第4期38-40,共3页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(60772123)