期刊文献+

Permanence and Periodic Solution of an Impulsive Delay Two-prey One-predator System with Variable Coefficients 被引量:1

Permanence and Periodic Solution of an Impulsive Delay Two-prey One-predator System with Variable Coefficients
下载PDF
导出
摘要 two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, by the comparison theorem of impulsive differential equation, the sufficient conditions are derived for the permanence and the existence of periodic solution of the system.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第2期267-273,共7页 数学季刊(英文版)
基金 Supported by the Education Department Natural Science Foundation of Henan Province (2008A180041)
关键词 IMPULSIVE DELAY comparison principle variable coefficients 脉冲微分方程 食饵系统 周期解 捕食者 变系数 持久性 时滞 全局渐近稳定
  • 相关文献

参考文献1

二级参考文献15

  • 1Rabinowitz, P. H.: Some global results for nonlinear eigenvalue problems. J. Functional Analysis, 7, 487-513(1971).
  • 2Crandall, M. G., Rabinowitz, P. H.: Bifurcation from simple eigenvalues. J. Funct. Anal., 8, 321-340(1971).
  • 3Crandall, M. G., Rabinowitz, P. H.: Bifurcation, perturbation of simple eigenvalues, and linearized stability.Arch. Rat. Mech. Anal., 52, 161-180 (1973).
  • 4Bainov, D., Simeonov, P.: Impulsive differential equations: Periodic solution and applications. Longman,England, (1993).
  • 5Shulgin, B., Stone, L. et al.: Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol, 60,1-26 (1998).
  • 6Lakmeche, A., Arino, O.: Bifurcation of nontrivial periodic solution of impulsive differential equations arising chemotherapeutic treatment. Dynamics of Continuous, Discrete and Impulsive System, 7, 265-287(2000).
  • 7Liu, X.: Impulsive stabilization and applications to population growth models. J. Math., 25(1), 381-395(1995).
  • 8Liu, x., Zhang, S.: A cell population model described by impulsive PDEs-exlstence and numerical approximation. Comput. Math. Appl., 36(8), 1-11 (1998).
  • 9Liu, X., Rohof, K.: Impulsive control of a Lotka-Volterra system. IMA Journal of Mathematical Control & Information, 15, 269-284 (1998).
  • 10Funasaki, E., Kot, M.: Invasion and chaos in a periodically pulsed Mass-Action Chemostat. Theoretical Population Biology, 44, 203-224 (1993).

共引文献2

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部