期刊文献+

中国成年人高血压患病区域聚集性及危险因素的多水平模型分析 被引量:17

Multilevel regression analysis on region cluster and risk factors of hypertension in the Chinese adult population
原文传递
导出
摘要 目的分析中国成年人高血压的区域聚集性及危险因素,探讨多水平模型在高血压危险因素研究中的应用。方法采用多阶段随机抽样方法,于2000--2001年从中国10地区共抽得年龄在35~74岁之间的15540人作为研究对象,采用MLwiN2.02软件对数据进行二水平logistic回归模型拟合。结果高血压的患病存在地区聚集现象,方差成分系数为3.1%。在调整了年龄和性别的影响后,全身型肥胖人群(BMI≥28kg/m2)和超重人群(BMI24~27.9kg/m^2)分别为BMI正常人群(18.5~23.9kkg/m^2)患高血压风险的4.50(95%CI:4.00~5.06)和2.26(95%C1:2.07~2.46)倍;中心型肥胖人群(男性腰围≥85cm或女性≥80cm)为正常腰围人群患高血压风险的2.62(95%CI:2.42~2.83)倍;甘油三酯、总胆固醇、血糖、低密度脂蛋白胆固醇含量升高或者高密度脂蛋白胆固醇含量降低者患病风险分别为正常者高血压患病风险的2.10(95%CI:1.89—2.33)、2.08(95%CI:1.84~2.35)、1.85(95%CI:1.60—2.14)、1.58(95%CI:1.38~1.81)和1.49(95%CI:1.32~1.69)倍,饮酒人群为不饮酒人群患高血压风险的1.15(95%C1:1.05~1.27)倍。结论高血压的发生不仅与个体肥胖、血糖升高、血脂异常和饮酒等危险因素有关,还受所居住区域环境因素的影响;在高血压的一级预防中,既要关注高危人群,还要重视以一般人群为基础的群体预防控制工作。 Objective To analyze the region cluster and risk factors of hypertension in the Chinese adult population and to explore the application of multilevel regression model in the risk factors of hypertension. Methods Multi-stage random sampling technique was used to choose 15 540 individuals aged 35-74 years from 10 regions in China. Two-level logistic regression models were fitted under MLwiN 2.02 software. Results The region cluster of hypertension existed and variance portion coefficient was 3.1%. After adjusting for the age and gender, overall obese people (BMI≥28 kg/m^2) were 4.50(95%C1: 4.00-5.06) times, overweight people (BMI=24-27.9 kg/m2) were 2.26(95%CI: 2.07-2.46) times more likely to be hypertensive as compared with those of normal BMI (18.5-23.9 kg/m^2) , and those centrally obesive people (Waist circumference /〉 85 cm in male or 80 cm in female) were 2.62 (95 % CI: 2.42 -2.83 ) times more likely to be hypertensive as compared with those of normal WC. The age-and gender-adjusted odds ratios (ORs) of triglyceride (TG), serum total cholesterol (TC) , glucose, low-density lipoprotein cholesterol (LDL-C) , high-density lipoprotein cholesterol (HDL-C) and drinking alcohol were 2.10 (95% C I: 1.89-2.33), 2.08 (95% C I: 1.84-2.35), 1.85 (95% C IP: 1.60-2.14), 1.58 (95% CI: 1.38-1.81) , 1.49 (95% CI: 1.32-1.69) and 1.15 (95% CI: 1.05-1.27) , respectively. Conclusion The prevalence of hypertension was not only affected by individual risk factors, such as obesity, drinking alcohol, abnormal glucose and serum lipids profile, but also affected by the geographic environment where people resided in. Population-and risk factors targeted strategies, proved a promising way to reduce individual risk of hypertension in the primary prevention of hypertension.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2009年第7期716-719,共4页 Chinese Journal of Epidemiology
关键词 高血压 危险因素 区域聚集性 二水平logistic回归模型 方差成分系数 Hypertension Risk factor Region cluster Two-level logistic regression model Variance portion coefficient
  • 相关文献

参考文献16

  • 1胡以松,姚崇华,王文志,胡建平,何宇纳,翟凤英.2002年中国部分民族高血压患病情况[J].卫生研究,2006,35(5):573-575. 被引量:69
  • 2Bloch MJ,Basile J.Hypertension prevalence increases and hypertension control rates improve in the United States:2003-2004.J Clin Hypertens (Greenwich),2007,9(2):147-149.
  • 3Keamey PM,Whelton M,Reynolds K,et al.Worldwide prevalence of hypertension:a systematic review.J Hypertens,2004,22(1):11-19.
  • 4Reynolds K,Gu D,Muatner P,et al.Geographic variations in the prevalence,awareness,treatment and control of hypertension in China.J Hypertens,2003,21 (7):1273-1281.
  • 5Merlo J,Asplund K,Lynch J,et al.Population effects on individual systolic blood pressure:a multilevel analysis of the World Health Organization MONICA Project.Am J Epidemiol,2004,159(12):1168-1179.
  • 6Larsan K,Merlo J.Appropriate assessment of neighborhood effects on individual health:integrating random and fixed effects in multilevel logistic regression.Am J Epidemiol,2005,161 (1):81-88.
  • 7Gu D,Reynolds K,Wu X,et al.Prevalence,awareness,treatment,and control of hypertension in China.Hypertension,2002,40(6):920-927.
  • 8Matthews KA,Katholi CR,McCreath H,et al.Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study.Circulation,2004,110(1):74-78.
  • 9Rasbash J,Steele F,Browne W,et al.A user's guide to MLwiN.Version 2.0.London:Centre for Multilevel Modelling Institute of Education University of London,2004.
  • 10Merlo J,Chaix B,Ohlsson H,et al.A brief conceptual tutorial of multilevel analysis in social epidemiology:using measures of clustering in multilevel logistic regression to investigate contextual phenomena.J Epidemiol Community Health,2006,60(4):290-297.

二级参考文献12

共引文献122

同被引文献166

引证文献17

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部