期刊文献+

一类四元数体上线性矩阵方程组的解 被引量:2

General Solution to a System of Quaternion Matrix Equations
下载PDF
导出
摘要 利用四元数矩阵的广义逆给出了在四元数体上由4个线性方程A1X=C1,A2X=C2,A3XB3=C3,A4XB4=C4,构成的方程组有解的充分必要条件和一般解的表达式. In this paper, the quatemion matrix equations A1X = C1 ,A2X = C2 ,A3XB3 = C3 ,A4XB4 = C4, is considered. A necessary and sufficient condition for the existence and the expression of the general solution to the system is obtained by using the generalized inverses of matrices.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期439-442,共4页 Journal of Sichuan Normal University(Natural Science)
基金 广西自然科学基金(0640016)资助项目
关键词 四元数 线性方程组 解的表达式 广义逆 Quatemion Matrix equations General solution Generalized inverse
  • 相关文献

参考文献6

二级参考文献48

共引文献28

同被引文献28

  • 1王兴国.(p,r)-不变凸性下广义分式规划的最优性条件[J].四川师范大学学报(自然科学版),2005,28(1):66-69. 被引量:12
  • 2王秀玉,姜兴武,李慧玲.对称双边对角矩阵的性质及广义逆[J].东北师大学报(自然科学版),2005,37(3):128-131. 被引量:3
  • 3王宏兴,刘晓冀.分块态射的广义逆[J].曲阜师范大学学报(自然科学版),2007,33(2):44-46. 被引量:1
  • 4Yu Y, Wei Y. Determinantal representation of the generalized inverse AT,S^(2) over integral domains and its applications[ J]. Linear and Multilinear Algebra,2009,57 (6) :547-559.
  • 5Liu X, Yu Y, Wang H. Determinantal representation of weighted generalized inverses [ J ]. Applied Mathematics and Computation,2009,208 (2):556-563.
  • 6Bhaskara Rao K P S. Generalized inverse of matrices over integral domains[ J]. Linear Algebra Appl, 1983,49( 1 ) :179-189.
  • 7Robinson D W. The classical adjoint[ J]. Linear Algebra Appl,2005,411 (1) :254-276.
  • 8Stanimirovic P, Stankovic M. Determinantal representation of weighted Moore-Penrose inverse [ J ]. Matematicki Vesnik, 1994, 46( 1 ) :41-50.
  • 9Cai J, Chen G L. On determinantal representation for the generalized inverse and its applications [ J ]. Numer Linear Algebra Appl,2007,14(2) :169-182.
  • 10Yu Y M, Wang G R. The generalized inverse AT,S^(2) over commutative rings [ J]. Linear and Multilinear Algebra,2005,53 (4) : 293 -302.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部