期刊文献+

求解背包问题的病毒协同进化粒子群算法 被引量:14

Virus-evolutionary particle swarm optimization algorithm for knapsack problem
下载PDF
导出
摘要 为提高粒子群算法的搜索性能,提出一种基于病毒进化理论的改进离散粒子群算法:病毒协同进化粒子群算法.在粒子群中引入生物病毒机制和宿主与病毒基于感染操作的思想,病毒采用与粒子等长的编码方式,执行反向代换、结合等操作,利用病毒的水平感染和垂直传播能力较好地维持个体的多样性和对解空间的局部搜索能力.通过解决背包问题对算法进行验证,仿真表明所提算法搜索性能优于遗传算法、模拟退火及标准粒子群等其他算法.该算法能有效求解背包问题等NP难题. To improve the search capability of particle swarm algorithm, an improved discrete particle swarm optimization algorithm based on virus evolution theory is proposed and named as virus-evolutionary discrete particle swarm optimization (VEPSO) algorithm. Biological virus mechanism and the infection-based operation between host and virus are introduced in the particle swarm. Virus individual is coded with the same length as particle, and it executes infection and incorporation operations. The horizontal infection and vertical propagation of virus are fully used to maintain the individual diversity and local search capability in solution space. This algorithm is verified by solving knapsack problem. Simulation results show that the search capability of VEPSO algorithm is better than that of genetic algorithm, simulated annealing and standard PSO algorithm. This algorithm is able to effectively solve knapsack and other NP-hard problems.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第6期103-107,共5页 Journal of Harbin Institute of Technology
基金 中国高技术研究发展计划重大资助项目(2006AA01A103)
关键词 粒子群算法 病毒 背包问题 病毒感染 particle swarm algorithm virus knapsack problem virus infection
  • 相关文献

参考文献10

二级参考文献26

  • 1金慧敏,马良.遗传退火进化算法在背包问题中的应用[J].上海理工大学学报,2004,26(6):561-564. 被引量:37
  • 2马慧民,柳毅,叶春明.基于改进粒子群算法求解单级多资源约束生产批量计划问题[J].工业工程与管理,2005,10(6):66-70. 被引量:26
  • 3[1]王小平,曹立明.遗传算法--理论、应用与算法实现[M].西安:西安交通大学出版社,2002,136~140.
  • 4EBERHARD R,KENNEDY J.A new optimizer using particle swarm theory [ A].Proceeding of sixth international symposium on micro machine and human science[C],NJ,USA:IEEE Service Center,1995,39-43.
  • 5KENNEDY J,EBERHARD R.Particle swarm optimization[A].Proceeding of IEEE Int' l Conference on Neural Networks[C],NJ,USA:IEEE Service Center,1995,1982-1948.
  • 6MA Hui-min,YE Chun-ming,ZHANG Shuang.Binary immune memory particle swarm optimization algorithm for the single level uncapacitated lot-sizing problem[A].The Proceedings of the 12th International Conference on Industrial Engineering and Engineering Management[ C],Beijing:China machine press,2006,602-605.
  • 7KENNEDY J,EBERHARD R.A discrete binary version of the particle swarm optimization [A].Proceeding of the conference on System,Man,and Cybernetics [ C ],NJ,USA:IEEE Service Center,1997,4104-4109.
  • 8FATIH M,LIANG Y.A binary particle swarm optimization algorithm for lot sizing problem[J].Journal of Economic and Social Research,2003,5 (2):1-20.
  • 9Wang J,Masory O.On the accuracy of a stewart platform:part Ⅰ the effect of manufacturing tolerances[J].IEEE Transactions on Robotics and Automation,1998,14(3):114-120.
  • 10Masory O,Wang J,Zhuang H.On the accuracy of a stewart platform:part Ⅱ kinematics calibration and compensation[J].IEEE Transactions on Robotics and Automation,1999,15(3):215-220.

共引文献95

同被引文献134

引证文献14

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部