2[2]Guzman HR, McNamara AJ, Nguyen DX, et al. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius[J]. Ultrasound Med Biol, 2003, 29(8):1211-1222.
3[3]Guzman HR, Nguyen DX, Khan S, et al. Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells[J]. J Acoust Soc Am, 2001,110(1):597-606.
4[4]Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: mechanical DNA delivery by ultrasonic cavitation[J]. Somat Cell Mol Genet, 2002,27(1-6):115-134.
5[5]Miller DL, Gies RA. The influence of ultrasound frequency and gas-body composition on the contrast agent-mediated enhancement of vascular bioeffects in mouse intestine[J]. Ultrasound Med Biol, 2000,26(2):307-313.
6[6]Chen S, Kroll MH, Shohet RV, et al. Bioeffects of myocardial contrast microbubble destruction by echocardiography[J]. Echocardiography, 2002, 19(6):495-500.
7[7]Miller DL, Gies RA. The influence of ultrasound frequency and gas-body composition on the contrast agent-mediated enhancement of vascular bioeffects in mouse intestine[J]. Ultrasound Med Biol, 2000,26(2):307-313.
8[9]Miller DL, Gies RA. The influence of ultrasound frequency and gas-body composition on the contrast agent-mediated enhancement of vascular bioeffects in mouse intestine[J]. Ultrasound Med Biol, 2000,26(2):307-313.
9[10]Miller DL, Song J. Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo[J]. Ultrasound Med Biol, 2002,28(10):1343-1348.