期刊文献+

基于最大邻域内差的静脉图像增强和图像分割 被引量:8

Vein Image Enhancement and Segmentation Based on Maximal Intra-Neighbor Difference
原文传递
导出
摘要 为了克服因静脉图像照度不均造成的现有分割算法对静脉纹路分割不够精确的问题,提出了一种基于最大邻域内差(Maximal intra-neighbor difference,MIND)的静脉图像分割算法,其核心是充分利用静脉图像的邻域信息和新设计的距离函数计算出原图的MIND图像,并与经过直方图修正后的原图加权相加得到了增强图像,之后,通过计算出增强图像的均值图像并与增强图像进行加权比较得到最终的分割结果。在分割的过程中,可以根据MIND图像的直方图自适应调整算法中的分割参数提高分割效果,最后的实验结果证明了算法的有效性。 In order to overcome the problems that vein lines are inaccurate in results of existed segmentation algorithms caused by the uneven illumination of the vein image, a novel image segmentation algorithm based on maximalson intra-neighbor difference(MIND) is proposed. In the algorithm, the neighbor information of original vein image is well used to get the MIND image together with a new distance function. The enhanced image is got by adding with original image processed by histogram modification. Through the calculated mean image of enhanced image and weighted comparison with enhanced image, segmentation result is obtained. During the segmentation, to the segmentation result can be improved by adjusting key parameters adaptively according to the histogram of MIND image. Experimental results demonstrate the effectiveness of the proposed algorithm.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第7期1830-1837,共8页 Acta Optica Sinica
基金 国家自然科学基金(60674034) 佛山市科技发展专项资金(200601006) 佛山市禅城区产学研专项资金 (2007B1041)资助课题
关键词 图像处理 静脉识别 图像分割和增强 最大邻域内差 直方图 image processing vein recognition image segmentation and enhancement maximal intra-neighbor difference (MIND) histogram
  • 相关文献

参考文献18

  • 1Pal N. R., Pal S. K.. A review of image segmentation techniclues[J]. Pattern Recognition, 1993, 26(9) : 1277-1294.
  • 2J. Gang Wang, Wei-Yun Yau, Andy Suwandy et al.. Person recognition by fusing palmprint and palm vein images based on Laplacianpalm representation[J]. Pattern Recognition, 2008,41 (5) : 1531- 1544.
  • 3Miura, N. Nagasaka, A. Miyatake. Extraction of finger-vein patterns using maximum curvature points in image profiles[J]. IEICE Transactions on Information and Systems, 2007, E90-D (8) ,1185-1194.
  • 4Naoto Miura, Akio Nagasaka, Takafumi Miyatake. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification[J]. Machine Vision and Applications, 2004, 15(4): 194-203.
  • 5Shahin M. , Badawi A. , Kamel M.. Biometric authentication using fast correlation of near infrared hand vein patterns[J]. International Journal of Biometrical Sciences, 2007, 2(3) : 141 -148.
  • 6Marios Vlachos, Evangelos Dermatas, Vein segmentation in infrared images using compound enhancing and crisp clustering [C]. Proceeding of the 6th International Conference on Computer Vision Systems ( ICVS 2008 ), Santorini, Greece: Springer, 2008, 393-402.
  • 7Y. Zhang, Q. Li, J. You, P. Bhattacharya. Palm vein extraction and matching for personal authentication [J]. Proceeding of International Conference on Visual In formation Systems, Shanghai, China: Springer, 2007. 154-164.
  • 8S. K. Im, H. S. Choi, S. W. Kim. A direction based vascular pattern extraction algorithm for hand vascular pattern verification [J]. ETRI Journal, 2003, 25(2): 101-108.
  • 9Lopez, Sebastian; Gonzalez, Albano, Hand veins segmentation and matching under adverse conditions [C]. Proceedings of SPIE, 2003, 5119:166--177.
  • 10Chen Liukui, Zheng Hang, Li Li et al.. Near-infrared dorsal hand vein image segmentation by local thresholding using grayscale morphology[C]. Proceeding of The 1st International Conference on Bioinformatics and Biomedical Engineering, China: Wahan, 2007, 868-871.

二级参考文献24

  • 1Im Sang-Kyun, Park Hyung-Man, Kim Young-Woo, et al. An biometric identification system by extracting hand vein patterns[J]. Journal of the Korean Physical Society, 2001, 38(3): 268-272.
  • 2Lin Chih-Lung, Fan Kuo-Chin, Biometrie verification using thermal images of Palm-Dorsa vein patterns [J]. IEEE Transactions on Circuits and Systems for Video Technology,2004, 14(2): 199-212.
  • 3Cross J M, Smith C L. Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification [C] //Proceedings of Institute of Electrical and Electronics Engineers 29th Annual 1995 International IEEE Carnahan Conference on Security Technology, Sandertead, Surrey, 1995:20-35.
  • 4Beucher S. The watershed transformation applied to image segmentation [C] //Proceedings of the 10th Pfefferkorn Conference on Signal and Image Processing in Microcopy and Microanalysis, Cambridge, 1991:299-314.
  • 5Vincent Luc, Soille Pierre. Watersheds in digital spaces: An efficient algorithm based on immersion simulations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991, 13(6): 583-598.
  • 6Shinagawa Yoshihisa, Kunii Tosiyasu L. Unconstrained automatic image matching using multiresolutional critical-point filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(9): 994-1010.
  • 7Qi Yingyong, Hunt Bobby R. A Multiresolution approach to computer verification of handwritten signatures [J]. IEEE Transaetions on Image Processing, 1995, 4(6): 870-874.
  • 8Snelick R,Uludag U,Mink A,et al.Large scale evaluation of multimodal biometric authentication using state-of-the-art systems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):450-455.
  • 9LIN Chih-Lung,FAN Kuo-Chin.Biometric Verification Using Thermal Images of Palm-Dorsa Vein Patterns[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(2):199-212.
  • 10LIN Hong,Anil J.Integration of multiple cues in biometrics systerms[EB/OL].http://biome trics.cse.msu.edu/Karthik-thesis05.pdf.2005.

共引文献15

同被引文献87

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部