期刊文献+

KPCA与GRNN在含能化合物QSAR中的应用研究

ON APPLYING KPCA AND GRNN IN QSAR OF ENERGETIC COMPOUND
下载PDF
导出
摘要 使用KPCA(核主成分分析)对含能化合物的结构参数进行参数选择,在保持原有数据主要信息的情形下,得到数据的主成分。将降维后的特征信息作为GRNN(广义回归神经网络)的输入,含能化合物的性能数据作为输出,建立非线性的定量含能化合物结构性能关系预测模型。与PCA_GRNN模型的比较表明,该模型能很好地反映含能化合物结构和性能之间的关系,具有较高的预测正确率。 In this article it used. KPCA ( kernel principal components analysis) to select parameter for the structure parameters of energetic compounds, and the principal components of the data is obtained in the case of maintaining main information of original data. Then these principal components were used as the inputs of the GRNN ( Generalized Regression Neural Networks) after dimensions reduction and the performance data of energetic compounds were used as outputs, all for constructing a nonlinear prediction model of structural performance relationship of quantitative energetic compounds. The comparison result with PCA_GRNN model indicated that this model can well reflect the relation between structures and performances of energetic compounds and has the high prediction precision.
出处 《计算机应用与软件》 CSCD 2009年第7期112-114,共3页 Computer Applications and Software
基金 陕西省自然科学基金(98X11) 陕西省教育厅重点科研计划项目(00JK015)
关键词 核主成分分析 广义回归神经网络 结构性能关系 含能化合物 KPCA GRNN Quantitative structure-activity relationship (QSAR) Energetic compound
  • 相关文献

参考文献9

二级参考文献43

  • 1陈念贻,张未名.模式识别—人工神经网络方法在钢铁冶金中的应用[J].科技通讯(上海),1994,8(1):42-46. 被引量:4
  • 2曹树卫.棒线材控制轧制和控制冷却技术的研究与应用[J].河南冶金,2005,13(3):23-25. 被引量:13
  • 3姚建明,杨洁明.基于RBF神经网络的非线性系统智能控制[J].机械工程与自动化,2005(3):15-17. 被引量:6
  • 4Lee S.,Heinbuch D.,Training a neural-network based intrusion detector to recognize novel attacks,IEEE Transactions on Systems,Man and Cybernetics,Part A,2001,31 (4):294 ~299.
  • 5B.Balajiuath,S.V.Raghavan,Intrusion detection through learning behavior model,Computer Communication,2001,24 (2):1202 ~ 1212.
  • 6Ye,N.,A markov chain model of temporal behavior for anomaly detection,In Workshop on Information Assurance and Security,West Point,NY,June 2000.
  • 7S.Mukkamala,G.I.Janoski,A.H.Sung,Intrusion detection using support vector machines,Proceedings of the High Performance Computing Symposium-HPC 2002,pp.178 ~ 183,San Diego,April 2002.
  • 8B.Scholkopf,A.Smola,K.R.Muller,Nonlinear component analysis as a kernel eigenvalue problem,Neural Computation,1998,10 (5),1299 ~1319.
  • 9Vapnik V.N.,The nature of statistical learning theory,New York:Springer-Verlag,1995.
  • 10.[EB/OL].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.,.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部