期刊文献+

基于神经网络与改进D-S证据理论的目标识别 被引量:3

下载PDF
导出
摘要 研究基于神经网络(NN)和D-S证据理论相结合对多传感器多测量周期进行数据融合的目标识别方法.采用中心式融合算法,利用神经网络对单个传感器不同周期的目标进行融合识别;利用D-S证据理论对识别信息进行全局融合,得到综合的目标识别,达到对目标识别的目的,并通过实例证明了该方法的有效性.
出处 《四川兵工学报》 CAS 2009年第7期67-69,共3页 Journal of Sichuan Ordnance
  • 相关文献

参考文献6

二级参考文献13

  • 1沈永欢 梁在中 等.实用数学手册[M].北京:科学出版社,1999..
  • 2黄建冲.机载辐射源威胁识别专家系统:[硕士学位论文].合肥:电子工程学院,1999..
  • 3王凤山.机场工程综合防护系统分析[D].南京:解放军理工大学,2004:27-48.
  • 4David I Hall,James Linas.An Introduction to Multisensor Data Fusion[J].IEEE,1997,85(1):21-23.
  • 5Khellah F M,Murray M J,Allen MR.Data Fusion of Sea surface Temperature Data[C]//International Geoscience and Remote Sensing Symposium(IGARSS).[S.l]:[s.n.],2000,7:2111-2113.
  • 6尹成友.基于多传感器的近程目标高精度定位与跟踪的研究:[博士学位论文].合肥:中国科学技术大学,1997..
  • 7刘同明 夏祖勋 解洪成.数据融合技术及其应用[M].北京:国防工业出版社,2000..
  • 8凯依 S M.现代谱估计-原理与应用[M].北京:科学出版社,1994.
  • 9Richard A Gramann, Mary Beth Bennett, Thomas D.O'Brien.Vehicle and Personnel Detection Using Seismic Sensors. Part of the SPIE Conference on Sensors, C3I, Information, and Training Technologies for Law Enforcement. Boston, Massachusetts[J]. 1998, SPIE 3577: 73-85.
  • 10Hlawatsch F, Urbanke R L.Bilinear time-frequency representation of signal: the shift-scale invariant class[J]. IEEE Trans on Signal Processing, 1994, 42(2): 356-366.

共引文献19

同被引文献26

  • 1孟显勇,袁丁.多层BP神经网络用于破译椭圆曲线密码[J].四川师范大学学报(自然科学版),2005,28(3):371-375. 被引量:3
  • 2杨帆,黎会鹏,赵党军,李国平.基于MCS-51与LabVIEW的远程光电信号检测系统[J].武汉理工大学学报,2006,28(8):122-124. 被引量:10
  • 3Rabiner L R, Juang B H. Fundamentals of speech recognition [ M ]. Upper Saddle River, NJ : Prentice hall, 1993.
  • 4Gandhiraj R, Sathidevi P S. Auditory-based wavelet packet filterbank for speech recognition using neural network [ A ]//Proc Int Conf Adv Comput Commun, ADCOM [ C ] Institute of Electrical and Electronics Engineers Inc,2007: 666-671.
  • 5Mohammad I, Shah R S, Saad P D. Improving speaker independent speech recognition process using speech recognition engine[A]//Proc Int Conf Artif Intell,ICAI Proc Int Conf Mach Learn ; Models, Technol Appl , MLMTA [ C ]. Las Vegas ,NV ,United states : CSREA Press ,2008:870-875.
  • 6Lee Chin H, Rabiner, Lawrence R. Directions in automatic speech recognition[ J]. NTT Review, 1995,7(2) : 19-29.
  • 7Lalith Kumar T, Kishore Kumar T, Soundar Rajan K. Speech recognition using neural networks [ A ]// Int Conf Signal Process Syst [ C ]. IEEE Computer Society,2009: 248 -252.
  • 8Manish S, Richard M. Speech recognition using subword neural tree network models and multiple classifier fusion [ A ]// ICASSP IEEE Int Conf Acoust Speech Signal Process Proc Proceedings [ C ]. N J, United States: IEEE, 1995 : 3323-3326.
  • 9Ronan F, Edward J. Combined speech enhancement and auditory modeling for robust distributed speech recognition [J]. Speech Communication,2008,50(10) :797-809.
  • 10Paul N Leroux, Kerry Johnson. Using Resource Partitioning to Build Secure, Survivable Embedded Systems [M]. Washington, D C..RTC Magzine, 2006.

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部