期刊文献+

Vertex solution theorem for the upper and lower bounds on the dynamic response of structures with uncertain-but-bounded parameters 被引量:4

Vertex solution theorem for the upper and lower bounds on the dynamic response of structures with uncertain-but-bounded parameters
下载PDF
导出
摘要 The aim of this paper is to evaluate the effects of uncertain-but-bounded parameters on the dynamic response of structures. By combining the interval mathematics and the finite element analysis, the mass matrix, damping matrix, stiffness matrix and the external loads are represented as interval matrices and vector. With the help of the optimization theory, we present the vertex solution theorem for determining both the exact upper bounds or maximum values and the exact lower bounds or minimum values of the dynamic response of structures, in which these parameters reach their extreme values on the boundary of the interval mass, damping, stiffness matrices and the interval extemal loads vector. Three examples are used to illustrate the computational aspects of the presented vertex solution theorem. The aim of this paper is to evaluate the effects of uncertain-but-bounded parameters on the dynamic response of structures. By combining the interval mathematics and the finite element analysis, the mass matrix, damping matrix, stiffness matrix and the external loads are represented as interval matrices and vector. With the help of the optimization theory, we present the vertex solution theorem for determining both the exact upper bounds or maximum values and the exact lower bounds or minimum values of the dynamic response of structures, in which these parameters reach their extreme values on the boundary of the interval mass, damping, stiffness matrices and the interval extemal loads vector. Three examples are used to illustrate the computational aspects of the presented vertex solution theorem.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期367-379,共13页 力学学报(英文版)
基金 the National Outstanding Youth Science Foundation of China (10425208) 111 Project (B07009) FanZhou Science and Research Foundation for Young Scholars (No. 20080503)
关键词 Dynamic response Vertex solution theorem Uncertain-but-bounded parameters Dynamic response, Vertex solution theorem ,Uncertain-but-bounded parameters
  • 相关文献

参考文献2

二级参考文献14

  • 1Zhiping Qiu Xiaojun Wang.Interval analysis method and convex models for impulsive response of structures with uncertain-but-bounded external loads[J].Acta Mechanica Sinica,2006,22(3):265-276. 被引量:7
  • 2Shinozuka M.: Maximum structural response to seismic excitations. Journal of Engineering Mechanics, 96(5): 729-738 (1970)
  • 3Chen EC., Soroka W.W.: Impulse response of a dynamicsystem with statistical properties. Journal of Sound and Vibration, 31(3):12-39 (1973)
  • 4Elishakoff I.: Convex versus probabilistic methods of uncertainty in structural dynamics. In: Petyt M., Wolfe H.E, Mei C. (eds.)Structural Dynamics Recent Advances, Elsevier Science Pulishers, London, England, 1990
  • 5Ben-haim Y., Cfien G., Soong T.T.: Maximum structural response using convex models. Journal of Engineering Mechanics, 122(4):336-352 (1996)
  • 6Tzan S.R., Pantelides C.E: Convex models for impulsive response of structures. Journal of Engineering Mechanics, 122(6), 521-529(1996)
  • 7Ben-Haim Y.: Fatigue lifetime with load uncertainty represented by convex model. Journal of Engineering Mechanics, 120(3),445-462 (1994)
  • 8Qiu Z.P., Wang X.J.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach.International Journal of Solids and Structures, 40(20): 5423-5439(2003)
  • 9Moore R.E.: Methods and Applications of Interval Analysis.Prentice-Hall, Inc., London, 1979
  • 10Alefeld G., Herzberger J.: Introductions to Interval Computations.Academic Press, New York, 1983

共引文献12

同被引文献38

  • 1王晓玲,谢怀宇,王佳俊,陈文龙,蔡志坚,刘宗显.基于Bootstrap和ICS-MKELM算法的大坝变形预测[J].水力发电学报,2020,39(3):106-120. 被引量:36
  • 2赵岩,林家浩,郭杏林.桥梁滞变非线性随机地震响应分析[J].计算力学学报,2005,22(2):145-148. 被引量:4
  • 3邱志平,王晓军,马智博.结构疲劳寿命估计的集合理论模型[J].固体力学学报,2006,27(1):91-97. 被引量:13
  • 4沈祖和.区间分析方法及其应用[J].应用数学与计算数学,1983,2:1-29.
  • 5VESELAGOV G.The electrodynamics of substances with simultaneously negative values of ε and μ[J].Physics-Uspekhi,1968,10(4):509-514.
  • 6PENDRY J B,HOLDEN A J,STEWART W J,et al.Extremely low frequency plasmons in metallic mesostructures[J].Physical Review Letters,1996,76(25):4773.
  • 7PENDRY J B,HOLDEN A J,ROBBINS D J,et al.Magnetism from conductors and enhanced nonlinear phenomena[J].IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084.
  • 8KUSHWAHA M S,HALEVI P,DOBRZYNSKI L,et al.Acoustic band structure of periodic elastic composites[J].Physical Review Letters,1993,71(13):2022-2025.
  • 9YANG Suxia,PAGE J H,LIU Zhengyou,et al.Ultrasound tunneling through 3D phononic crystals[J].Physical Review Letters,2002,88(10):104301.
  • 10HU Xinhua,SHEN Yinfeng,LIU Xiaohan,et al.Superlensing effect in liquid surface waves[J].Physical Review E,2004,69(3):030201.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部