期刊文献+

基于小波变换的航海雷达图像噪声抑制方法 被引量:1

The Noise Suppression Method of Marine Radar Wave Image Based on the Wavelet Transform
原文传递
导出
摘要 为了有效抑制海浪图像中的干扰噪声,提出了一种基于小波变换的海浪图像噪声抑制算法。首先,利用小波变换检测出图像边缘获取噪声点的潜在位置;其次,根据海浪图像的直方图分布特性确定阈值,利用该阈值对海面回波信号和噪声进行分离;最后,根据海面回波信号具有形似性的特点,利用噪声邻域内的信号点对已检测出的噪声点进行属性值插值,从而达到滤除噪声的目的。为验证该算法的效果,将本算法与小波域的硬阈值和软阈值去噪算法进行了比较,对比结果显示,算法在海浪图像噪声抑制应用中优于传统算法,可以得到较好的海面回波信号,并且能够满足下一步的海浪分析要求。 In order to inhibit the image noises effectively,a novel algorithm for noise suppression is proposed based on the wavelet transform in this paper. Firstly,the image edges are detected by the wavelet transform and the potential positions of noises are determined. Secondly, according to the histogram distribution of wave image,a thresh- old value is determined, sea echo signal points are eliminated and the noise points are obtained. Finally,according to the similar property values of sea echo, the property values of determined noise points are substituted with the adjacent signal points and the noise are filtered. Experiments on the wave images indicate that the noise suppression effect for the proposed algorithm perform better than the traditional wavelet domain hard threshold and soft thresh- old method. So we can obtain the sea echo signal more correctly and more precisely by using the proposed algorithm and the filtered sea echo signal can satisfy for wave analysis.
出处 《遥感技术与应用》 CSCD 北大核心 2009年第3期370-373,共4页 Remote Sensing Technology and Application
关键词 图像处理 航海雷达 噪声抑制 小波变换 直方图 Image processing Marine radar Noise suppression Wavelet transform Histogram
  • 相关文献

参考文献7

二级参考文献28

  • 1易翔,王蔚然.复数小波统计模型在图像降噪中的应用[J].光电工程,2004,31(8):69-72. 被引量:4
  • 2任福安,邵秘华,孙延维.船载雷达观测海浪的研究[J].海洋学报,2006,28(5):152-156. 被引量:8
  • 3张蕊,赵振维,林乐科.降雨对雷达探测性能的影响[J].现代雷达,2007,29(1):51-54. 被引量:11
  • 4Stepien J, Zielinski T, Rumian R, Image denoising using scaleadaptive lifting sche[A]. Proc. IEEE Int. Conf. Image Processing[C]. 2000,3(9) :288 - 291.
  • 5Mihcak M K, Kozinsev I, Ramchandran K, et al. Low-complexity image denoising based on statistical modeling of Swavelet coefficients[J]. IEEE Signal Processing Lett, 1999,6(12) :300 - 303.
  • 6Chang S A G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J ]. IEEE Trans. Image Processing,2000,9(9): 1532 - 1546.
  • 7Li X, Orchard M T, Spatially adaptive image denoising under overcomplete expansion[A]. Proc. IEEE Int. Conf. Image Processing[C], 2000,3(9):1532- 1546.
  • 8Donoho D L, Johnston I M. Ideal spatial adaptation via wavelet shinkage[J]. Biometrica, 1994,81:425 - 455.
  • 9容观澳.计算机图像处理[M].北京:清华大学出版社,2000..
  • 10Barton D K. Radar system analysis and modeling[ M]. Norwood : Artech House, 2005.

共引文献18

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部