期刊文献+

基于动力学聚类技术的银行信贷风险挖掘 被引量:1

Risk analysis of banker's credit based on dynamic clustering technic
下载PDF
导出
摘要 借鉴物理学中动力学原理,提出基于动力学理论的聚类参数挖掘策略,并应用于银行贷款数据风险评估。定义了聚类动力学参数挖掘概念、g-平均、簇的-相似、风险相似度等概念,提出基于聚类动力学参数挖掘的聚类策略挖掘算法CSMA(clustering strategy mining algorithm),分析了该策略在不同参数下对实验结果的影响。实验结果表明,CSMA策略使得聚类分析的精度提高了9%~13%。 Inspired by the theory of dynamic in physics, a novel strategy of clustering based on dynamic parameter mining is proposed, and is applied to the risk evaluation system of bank loan. The main contributions include: Concept of clustering based on dynamic para- meter mining are defined, the concepts over bank loan databases, such as g-mean, the 0-similar of cluster, and risk similarity, a CSMA (clustering strategy mining algorithm) algorithm based on dynamic parameters mining are proposed, the effect on different parameters is analyzed. Extensive experiments demonstrate that CSMA algorithm is effective in clustering, and the precision is improved by 9%-13%.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第14期3478-3480,F0003,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60773169)
关键词 数据挖掘 银行贷款 聚类 动力学参数 风险相似度 data mining bank loan clustering dynamic parameter risk similarity
  • 相关文献

参考文献9

二级参考文献52

  • 1李家军,贺思辉.银企博弈关系建模及最优解分析[J].软科学,2004,18(6):34-38. 被引量:2
  • 2袁方,孟增辉,于戈.对k-means聚类算法的改进[J].计算机工程与应用,2004,40(36):177-178. 被引量:48
  • 3赵静娴,杨宝臣.一种基于神经网络和决策树的信用评估新方法[J].武汉科技大学学报(社会科学版),2005,7(2):36-39. 被引量:5
  • 4[1]Ermolaeva O, Rastogi M, Pruitt K, et al., Data management and analysis for gene expression arrays. Nature Genetics, 1998,20:19~23.
  • 5[2]Welford S, Gregg J, Chen E, et al., Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucleic Acids Research, 1998, 26:3059~3065.
  • 6[3]Charlie C, Chen Y. DNA microarray technology and its applications. Biotechnology Advances, 2000, 18(1): 35~46.
  • 7[4]Brazma A, Vilo J. Gene expression data analysis. FEBS Lett., 2000, 480(1):17~24.
  • 8[5]David R, Michael G. Interative visualization and exploration of relationships between biological objects. Trends in Biotechnology, 2000,18:487~494.
  • 9[6]Tang C, Zhang L, Zhang A, et al., Interrelated Two-way Clustering:An Unsupervised Approach for Gene Expression Data Analysis. Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001),2002, 41~48.
  • 10[7]Sherlock G. Analysis of large-scale gene expression data. Curr. Opin. Immunol, 2000, 12:201~205.

共引文献45

同被引文献13

  • 1杨春宇,周杰.一种混合属性数据流聚类算法[J].计算机学报,2007,30(8):1364-1371. 被引量:22
  • 2于剑 肖宇.聚类分析.中国计算机学会通讯,2009,1518(8):23-29.
  • 3YU Jian. General c - means clustering model [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2005,27 ( 8 ) : 1 197-1 211.
  • 4FREY B J, DUECK D. Clustering by passing messages between data points [ J ]. Science, 2007,315 ( 5814 ) : 972 -976.
  • 5HEYER L J, KRUGLYAK S, YOOSEPH S. Exploring ex- pression data:Identification and analysis of eoexpressed genes[ J]. Genome Research,9 : 1 106-1 115.
  • 6GIRVAN M, NEWMAN M E J. Community structure in social and biological networks [ J ]. Proc Natl Acxcad Sci USA ,99,2002:7 821-7 826.
  • 7DHILLON I S, MALLELA S, MODHA D S. Information - theoretic co - clustering[ C ]. Proceedings of the 26th Annual International ACM SIGIR Conference on Re- search and Development in Information Retrieval,2003: 89-98.
  • 8David Olson,Yong Shi.商业数据挖掘导论[M].北京:机械工业出版社,2007,44-45.
  • 9向剑平,唐常杰,陈瑜,李川,左劼,胡进军.δ-KCLR:基于优化初始簇的聚类算法及其应用[J].四川大学学报(自然科学版),2009,46(4):924-928. 被引量:1
  • 10高崇南,余宏亮,郑纬民.一种自动推断复杂系统层次结构任务模型的方法[J].计算机学报,2010,33(1):119-127. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部