期刊文献+

基于决策树与相异度的离群数据挖掘方法 被引量:1

Approach to Outliers Mining Based on Decision Tree and Dissimiliarity
下载PDF
导出
摘要 在数据挖掘中我们往往会忽略离群数据,可是这些数据却往往包含重要的信息。本文采用了将决策树与相异度相结合的方式进行离群数据的挖掘。通过计算决策树中各属性的信息增益,递归构造出决策树,并通过剪枝,进行初次的离群点检测,再运用相异度计算公式建立矩阵,找出最终的离群点集合。 We always ignore the outlier in the course of data mining, but the outlier sometimes include the important information. The outlier mining is done by the way of joining the decision tree and dissimiliarity in the paper. The decision tree is recursively con- structed by computing the information gain of different attributes and the outlier is firstly detected by pruning, then establish matrices by the dissimiliarity, finding the outlier set.
作者 陈雪娇 任燕
出处 《微计算机信息》 2009年第21期131-132,124,共3页 Control & Automation
基金 江西省教育厅基金项目(赣教技字[2005]42) 江西省教改基金项目(赣教改字[2005]100)
关键词 离群数据 决策树 相异度 outlier decision tree dissimiliarity
  • 相关文献

参考文献4

二级参考文献51

  • 1龙腾芳.数据挖掘技术在农业领域中的应用研究[J].微计算机信息,2005,21(06X):42-43. 被引量:21
  • 2潘珩.汽车营销决策支持系统数据仓库的设计与实现[J].石河子大学学报(自然科学版),2005,23(5):658-660. 被引量:5
  • 3[3]M.Melta,R.Agrawal,J.Rissanen.:SLIQ:A fast scalable classifier for data mining".In EDBT'96,Avigon France,March 1996.
  • 4Zhang T, Ramakrishman R, Livny M. BIRCH:An efficient data clustering methodfor very large databases[A].In Proc.1996 ACM-SIGMOD Int.Conf Management of Data(SIGMOD'96)[C]. Canada,1996, 103-114.
  • 5Hinneburg H,Keim D A. An efficient approach to clustering in large multimedia databases with noise[C]. 1998 Int Conf. Knowledge Discovery and Data Mining (KDD'98)[C].New York:1998,58-65.
  • 6Ester M, Kriegel H. -P, Xu X. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification[A]. 4th Int. Symp. Large Spatial Databases (SSD'95)[C].Portland,ME, 1995,67-82.
  • 7Ankerst M,Breunig M,Kriegel H-P,Sander J. OPTICS: Ordering points to identify the clustering structure[A]. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'99)[C]. ,Philadelphia,PA,1999,49-60.
  • 8Han J, Kamber M. Data Mining: Concepts and Techniques[A].Copyright by Morgan Kaufmann Publishers[C], Inc,2001.
  • 9Breuning M,Kricgel H,Ng R.OPTICS-OF: Identifying Local Outliers[A]. In: Proc.of the 3rd European conference on Principles and Practice of knowledge Discovery in Databases(PKDD'99)[C].Prague,1999.262-270.
  • 10Arning A, Agrawal R,Raghavan P . A linear method for deviation in large database [A].In:Proc. of Int. Conf. Data Mining and Knowledge Discovery(KDD96)[C]. Portland, 1996,164-169.

共引文献46

同被引文献8

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部