期刊文献+

受演变随机激励结构响应的扩展精细积分方法 被引量:1

An extended precise integration method for response of a structure subjected to evolutionary random exciation
下载PDF
导出
摘要 对于受演变随机激励的线性多自由度体系,给出了计算其非平稳响应的扩展精细积分方法。首先采用虚拟激励法,将随机荷载转化成确定性荷载,然后采用Duhamel积分的精细计算方法,构造出统一形式的精确、高效递推格式。该方法避免了矩阵的求逆运算,不依赖于系统矩阵或其动力矩阵的性态,提高了数值稳定性和应用范围。该方法具有与混合型时程精细积分方法同样高的数值精度,而效率上要高于增维精细积分方法。算例验证了本文算法的优越性。 An extended precise integration method for computing the non-stationary response of a linear MDOF structure subjected to evolutionary random excitation was proposed.Random loads were firstly transformed into determinis-tic loads using a Pseudo-excitation algorithm before precise and efficient recursive relations with an unified form were con-structed using the precise computing method of Duhamel integration.The avoidance of inverse matrix computing made the presented method independent to the nature of the system matrix or its dyhamic matrices,enhanced the numerical stability and expanded its applied scopes.The presented method had the same high numerical precision as HPD-M and a higher ef-ficiency than the dimension-expanded precise integration method.Examples were giyen to show advantages of this method.
作者 慕文品
机构地区 北京大学工学院
出处 《振动与冲击》 EI CSCD 北大核心 2009年第7期131-134,142,共5页 Journal of Vibration and Shock
关键词 非平稳随机振动 随机激励 Duhamel积分 精细积分方法 non-stationary random vibration random excitation Duhamelintegration precise integration method
  • 相关文献

参考文献3

二级参考文献21

共引文献84

同被引文献7

  • 1姚熊亮,郭君,许维军.船舶结构远场爆炸冲击动响应的数值试验方法[J].中国造船,2006,47(2):24-34. 被引量:11
  • 2何建,肖玉凤,陈振勇,唐平.空爆载荷作用下固支矩形钢板的塑性极限变形[J].哈尔滨工业大学学报,2007,39(2):310-313. 被引量:15
  • 3LIN J H, ZHANG W S, WILLIAMS F W. Pseudo-excitation algorithm for non-stationary random seismic responses[J]. Eng Struct, 1994, 16(4):270-276.
  • 4XIA Guohua, LIN Chinglong. An unstructured finite volume approach for structural dynamics in response to fluid motions[J]. Computers & Structures, 2008, 86 (7/8): 684-701.
  • 5LV X, ZHAO Y, HUANG X Y, XIA G H, SU X H. A matrix-free implicit unstructured muhigrid finite volume method for simulating structural dynamics and ftuid-structure interaction[J]. Journal of Computational Physics, 2007, 225: 120-144.
  • 6CHEN Weidong, CHEN Hao, ZHANG Wenping, et al. A finite volume method for 3-D elastodynamics[ C ]//Proceedings of the Third International Conference on Modeling and Simulation; VOL2-modelling and simulation in Engineering. Wuxi, China, 2010: 88-91.
  • 7LIANG C C, TAI Y S. Shock responses of a surface ship subjected to noncontact underwater explosions [ J ]. Ocean Engineering, 2006, 33: 748-772.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部