期刊文献+

基于改进PSO算法的导弹控制参数优化 被引量:6

Missile Control Parameter Optimization Based on Improved PSO Algorithm
下载PDF
导出
摘要 研究了将粒子群算法(PSO)应用于空对空导弹控制参数自动设计的方法,解决导弹控制参数手工设计中遇到的困难与问题。标准PSO算法在导弹静稳定工作点参数优化中表现出良好性能,但在静不稳定工作点优化时容易限入局部最优,因此引入遗传算法(GA)的杂交思想对标准PSO算法进行了改进,以扩大解空间的范围。仿真结果表明:改进后的PSO优化算法具有更强的全局搜索能力,获得的参数能够满足给定的性能指标,并且可以节省大量的设计时间,具有很高的工程应用价值。 To solve the problem in air-to-air missile control parameter design, an automatic control parameter optimization technique is discussed based on particle swarm optimization(PSO) algorithm. The result shows that the standard PSO has good performance at statically stable points of the missile, but at statically unstable points it has a local extreme value in most cases. For expanding the diversity of particles, the hybrid method is taken from genetic algorithm (GA), so that the overall searching ability is enhanced, the results can meet the performance target. Time can be saved by using PSO algorithm in missile control parameter design, thus it has remarkable value in actual projects.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第4期445-449,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 南京航空航天大学青年科研基金(1003-906714)资助项目
关键词 空对空导弹 控制参数 粒子群优化 air-to-air missile control parameters particle swarm optimization
  • 相关文献

参考文献5

二级参考文献66

  • 1崔平远,郑建华,杨涤.具有频域指标约束的BTT导弹自动驾驶仪二次型法设计[J].宇航学报,1995,16(2):6-12. 被引量:8
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献445

同被引文献59

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部