期刊文献+

基于混沌优化算法的磁悬浮开关磁阻电动机控制的研究 被引量:1

Research of Bearing-Less Switched Reluctance Motor's Control Based on Chaos Optimization Algorithms
下载PDF
导出
摘要 针对磁悬浮开关磁阻电动机控制系统高精确度、快响应的要求,阐述了基于混沌优化算法的模糊神经网络控制方案。采用混沌粗搜索与细搜索相结合的优化策略,对模糊神经网络控制器中的参数进行优化,给出了具体设计方法和优化步骤。仿真结果表明,该磁悬浮开关磁阻电动机控制系统无振荡、无超调,具有较高的精度、较强的鲁棒性和抗干扰能力。 Aiming at the requirements of high accuracy and fast response of bearing-less switched reluctance motor's control system, the control project of fuzzy neural network (FNN) based on chaos optimization algorithms was expounded. The parameters of FNN controller were optimized with the chaos optimization tactics which adopted the combination of thick searching and thin searching, the concrete device methodology and optimization steps given. Emulation effects show that this bearing-less switched reluctance motor's control system has no vibration and overshoot with high accuracy, strong robustness and anti-disturbance.
作者 杨国福
出处 《电工电气》 2009年第7期4-6,27,共4页 Electrotechnics Electric
基金 国家自然科学基金资助项目(50477030)
关键词 磁悬浮开关磁阻电动机 模糊神经网络 混沌优化算法 bearing-less switched reluctance motor (BSRM) fuzzy neural network chaos optimization algorithm
  • 相关文献

参考文献4

二级参考文献23

  • 1杨国福,杨鹏,王晓宏,梁国壮,杜云.用于磁悬浮止推轴承控制系统的各种控制理论的比较[J].河北科技大学学报,2001,22(2):56-59. 被引量:9
  • 2姜智峰,刘泽民.一种新型模糊神经网络结构确定的研究[J].电路与系统学报,1997,2(1):20-24. 被引量:3
  • 3Wan Baoyun, Nie Jingnan, He Zhanya. A transiently chaotic neural-network implementation of the CDMA multiuser detector[ J]. IEEE Trans on. Neural Network,1999,10(5):1 257-1 259.
  • 4Lin C T, Lee C C G. Neural network based on fuzzy logic control and decision system [J]. IEEE Trans. on Computers, 1991,40 ( 12 ): 1 320-1 336.
  • 5Beatrice Lazzerini, Leonardo M, Marcello Chiaberge. A neuro-fuzzy approch to hybrid intelligent control[J]. IEEE Trans on Industry Applications,1999,35(2):413-425.
  • 6Magne Setnes, Hans Roubos. GA-fuzzy modeling and classification: Complexity and performance[J]. IEEE Trans on Fuzzy Systems,2000,8(5):509-522.
  • 7Yupu Yang, Xiaoming Xu, Wenyuan Zhang. Design neural networks based fuzzy logic[J]. Fuzzy Sets and Systems,2000,114(2):325-328.
  • 8Baogang Hu, George K I Mann, Raymond G Gosine. New methodology for analytical and optimal design of fuzzy PID controller[J]. IEEE Trans on Fuzzy Systems,1999,7(5):521-538.
  • 9Michael A N.Optimal Feedback Controller Approximation Via Neural and Fuzzy-Neural Networks[D].Texas University at Austin,1997:1~134.
  • 10Lazzerini B,Leonardo M Chiaberge M.A Neuro-Fuzzy Approach to Hybrid Intelligent Control[J].IEEE Transations on Industry Applications,1999,35(2):413~425.

共引文献12

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部