期刊文献+

肺部肿瘤在呼吸运动过程中三维实时位移曲线的建立探索 被引量:4

Establishment of 3D Real-time Displacement Curve in Respiration of Lung Cancer
下载PDF
导出
摘要 目的:研究肺部肿瘤受呼吸运动影响发生三维位移的规律。方法:肺癌患者在CT扫描结束后,将图像输入计划系统进行三维重建。勾画靶区,记录患者的靶区位置、肿瘤体积、肺功能、性别、年龄、体重等相关参数。在模拟机下从0°和90°分别拍摄患者的吸气和呼气图像,将图像用DicomRT接口存储并传输到计划系统,将图像序列重建后进行靶区勾画。三维重建后可得到感兴趣点在X、Y、Z三维方向的位移曲线。结果:用采集模拟机图像序列和感兴趣点勾画的方法,建立了肺部肿瘤上感兴趣点的三维实时位移曲线。此点在Z轴(头脚方向)的最大位移幅度为4.2mm,在X轴(左右方向)的最大位移幅度为3.8mm,在Y轴(前后方向)的最大位移幅度为2.9mm。结论:用模拟机采集肺部肿瘤的动态图像,通过DICOMRT接口传至放疗计划系统重建,可以建立靶区上任意点的三维实时位移曲线。 Objective To study the regularity of three-dimensional displacement in respiration of lung cancer. Methods After CT scanning, the CT images were transferred into target planning system (TPS) to obtain three-dimensional reconstruction images. Then target drawing and noting of target position, tumor volume, lung function, patient gender, age and weight were performed. The images during the course of inspiration and expiration in simulator were scanned and transferred into TPS by DICOM RT port. At last, the three-dimensional displacement curve of the interested points(X,Y and Z axis) could be obtained. Results The three-dimensional real time displacement curve of lung cancer interested points could be established by the way of collecting simulator images and drawing interested points. The maximum displacement range of the interested points were 4.2ram in Z-axis(head-foot direction), 3.gram in X-axis(left-right direction), 2.9mm in Y-axis(anterior-posterior direction). Conclusion The three-dimensional real time displacement curve of lung cancer at any point of the target can be established by collecting the dynamic images in simulator and reconstructing of the corresponding images in target planning system through the DICOM RT.
机构地区 潍坊市人民医院
出处 《医疗卫生装备》 CAS 2009年第7期82-83,共2页 Chinese Medical Equipment Journal
关键词 肺部肿瘤 呼吸运动 三维实时位移曲线 图像序列 靶区 lung cancer respiration the 3D real-time displacement curve image sequence target
  • 相关文献

参考文献6

二级参考文献63

  • 1李宝生,于金明,王学涛,李文武,郭守芳,闫婧.靶区中心的平均位置在肺部小肿瘤三维适形放射治疗中的应用研究[J].中华放射肿瘤学杂志,2004,13(3):180-183. 被引量:7
  • 2Ross C, Hussey DH, Edward C, et al. Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Radiat Oncol Biol Phys, 1990, 18:671-677.
  • 3Balter JM, Ten-Haken RK, Lawrence TS, et al. Uncertainties in CTbased radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys, 1996, 36:167-174.
  • 4Ekberg L, Holmberg O, Wittgren L, et al. What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol, 1998,48:71-77.
  • 5Gilhuijs KG, Drukker K, Touw A, van de Yen PJ, van Herk M. Interactive three dimensional inspection of patient setup in radiation therapy using digital portal images and computed tomography data [J].Int J Radiat Oncol Biol Phys, 1996, 34 (4) : 873 - 85.
  • 6Lujan AE, Baiter JM, Haken RKT. Determination of rotations in three dimensions using two dimensional portal image registration [J]. Med Phys, 1998, 25 (5) : 703-708.
  • 7Lujan AE, Larsen EW, et al. A Method for Incorporating Organ Motion due to Breathing into 3D Dose Calculation, Med Phys, 1999, 26:715-720.
  • 8SC Davies, AL Hill, RB Holmes, M Hallowell and PC Jackson Department of Medical Physics and Bioengineering, United Bristol Healthcare NHS Trust, UK. Ultrasound quantization of respiratory organ motion in the upper abdomen [J]. Br. J. Radio, 1996, 67:1096-1102.
  • 9Hideo D Kubo et al. Respiration gated radiotherapy treatment: a technical study [J]. Phys Med Biol, 1996, 41:83 -91.
  • 10AL. Mckenzie, How Should Breathing Motion be Combined with Other Errors when Drawing Margins around Clinical Target Volume [J].The British Journal of Radiology, 2000, 73 : 973 - 977.

共引文献56

同被引文献35

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部