期刊文献+

时延法相空间重构双参数联合估计方法研究 被引量:2

Study of dual parameters of delay-time coordinates phase space reconstruction
下载PDF
导出
摘要 重构相空间对于研究混沌时间序列有着重要的理论与现实意义,目前采用的分别估计嵌入时延和最小嵌入维数的技术路线,割裂了这两个参数所具有的天然联系.为此提出时延法重构相空间的双重构参数联合估计方法,根据两个重构参数的取值标准,利用迭代的方法,同步估计出时延法重构相空间双参数.应用所提出的方法,分别对高斯白噪声和Lorenz系统两个时间序列进行了数值验证,分析表明计算结果是可信的,可以应用于时间序列的相空间重构. Phase space reconstruction is important in theory and reality for researching into chaotic time series, and at present most of the researchers estimate the delay time and minimum embedding dimension respectively, which dissever the relationship of the two parameters. The new method of optimal phase space dual parameters of delay-time coordinates is put forward. According to the choosing criterion of two reconstruction parameters, this method estimates delay-time coordinates phase space dual parameters in-phase by the iterative approach. A numerical simulation on the Gauss white noise time series and Lorenz system time series is conducted. The results show that the proposed method is effective, accurate and robust for time series phase space reconstruction.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2009年第4期540-544,共5页 Journal of Dalian University of Technology
关键词 混沌时间序列 相空间重构 嵌入时延 最小嵌入维数 chaotic time series phase space reconstruction embedding time delay minimum embedding dimension
  • 相关文献

参考文献2

二级参考文献19

  • 1Lyapunov A. On completely additive vector functions[J]. Bull. Acad. Sci USSR, 1940,4:465-478.
  • 2Wolf Alan,Swift J B,Swinney H L,et al. Determining lyapunov exponents from a time series [J]. Physica 16D, 1985,285-317.
  • 3Lorenz E. Deterministic non-periodic flow[J]. Journal of Atmospheric Sciences, 1963,20:130-41.
  • 4Gulic D. Encounters with Chaos [M]. New York: No Graw-Hill ,Inc. 1992. 275-284.
  • 5Fukunaga K, Koontz W L G. Applications of the Karhunen-Loeve expansion to feature selection and ordering [J]. IEEE Transactions on Computers C-19,1970:917-923.
  • 6高俊,刘孝贤,孙国霞.信号与线性系统分析[M].济南:山东大学出版社,2001,8:132—148.
  • 7Bakker R, Schouten J C,Coppens M O, et al. Chaotic attractor learning and how to deal with nonlinear singularities[A]. Adaptive Systems for Signal Processing Communications, and Control Symposium 2000. ASSPCC. The IEEE 2000[C], 1-4 Oct. 2000,466-470.
  • 8Kantz H,Schreiber T. Nonlinear Time Series Analysis[M]. Cambridge University Press, 1997.
  • 9Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times and embedding windows [J]. Physica D (S0167-2789), 1999, 127: 48-60.
  • 10Takens F. Determing strange attractors in turbulence [J]. Lecture notes in Math (S0075-8434), 1981, 898: 361-381.

共引文献110

同被引文献19

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部