期刊文献+

面向任务的拼修策略问题及求解算法 被引量:14

Mission oriented cannibalization policy problem and its solving algorithm
原文传递
导出
摘要 研究了一种面向任务的拼修策略问题,建立了该问题的多维背包问题模型,提出了基于遗传算法的求解方案。然后设计了一种求解效果较好的两阶段遗传算法,进行了包括编码,交叉,变异,最优前沿限定算法,适应度函数,选择策略和退火局部搜索算法在内的全面的分析和设计。最后,给出了一个算例,检验了求解方案的实用性,并且通过计算实验分析了遗传算法的有效性。 A type of mission oriented cannibalization policy problem is studied this paper, the problem is modeled as a multi-dimensional knapsack problem, and a solution method what is based on genetic algorithm (CA) for the problem is presented. A two stages CA with better performance is designed and comprehensive analysis and design what including the optimal-frontier restriction algorithm, encoding, crossover, mutation, evaluation function, selection policy and simulated anneal based local search algorithm is performed. At last, the practicability of the solution method is verified by an example and analyzes the performance of the CA by computational, experiment respectively.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第7期97-104,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70501031)
关键词 面向任务 拼修策略 多维背包问题 两阶段遗传算法 mission oriented cannibalization policy multi-dimensional knapsack problem two stages genetic algorithm
  • 相关文献

参考文献3

二级参考文献12

  • 1玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 2Gemez A, Fernandez Q I, Garcia D D L,et al. Using genetic algorithms to resolve layout problems in facilities where there are aisles [J]. International Journal of Production Economics, 2003, 84(3): 271 - 282.
  • 3Tam K Y. Genetic algorithms, function optimization, and facility layout design [J]. European Journal of Operational Research,1992, 63(2): 322 - 346.
  • 4Tate D M, Smith A E. Unequal area facilitylayout using genetic search [J]. IIE Transactions, 1995,27:465-472.
  • 5Yam K Y,Chan S K. Solving facility layout problems with geometric constraints using parallel genetic algorithms: experimentation and findings [J]. International Journal of Production Research, 1998, 3(12): 3253 - 3272.
  • 6Lee H J. Heuristic graph-theoretic approach in facility layout problem: the development of a decision support system [D].Arlington, USA: University of Texas, 1988.
  • 7Lee K Y, Han S N, Roh M I. An improved genetic algorithm for multi-floor facility layout problems having inner structure walls and passages [ J]. Computers & Operations Research, 2003,30 ( 1 ), 117 - 138.
  • 8Zhou G G, Min H, Gen M. A genetic algorithm approach to the bi-criteria allocation of customers to warehouses [ J]. International Journal Production Economics, 2003, 86 ( 1 ): 35 - 45.
  • 9Tadahiko M, Hisao I, Hidee T. Multi-objective genetic algorithm and its applications to flowshop scheduling[ J]. Computer Industry Engineering, 1996, 30(4): 957-968.
  • 10李占山,public.cc.jl.cn,姜云飞.对基于模型诊断测试理论的修正与扩充[J].软件学报,2000,11(7):979-983. 被引量:10

共引文献46

同被引文献117

  • 1张莉,霍佳震.基于单船装卸运输模型的集卡配置仿真研究[J].系统仿真学报,2006,18(12):3532-3535. 被引量:23
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 3Van VELDHUIZEN D A,LAMONT G B. Evolutionary Computation and Convergence to a Pareto Front [ M ]. Madison, Wisconsin, USA: Stanford University Bookstore,1998:221 -228.
  • 4Van VELDHUIzEN D A. Muhiobjective evolutionary algorithms :Classifications,analyses,and new innovations [ D ]. Ohio :Air Force Institute of Technology, 1999.
  • 5ZITR E, THIELE L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach[J]. IEEE Transactions on Evolutionary Computation, 1999,3 (4) :257 - 271.
  • 6DEB K ,PRATAP A,AGARWAL S,et al. A Fast and Elitist Multi-ubjective Genetic Algorithm: NSGA-II [ J ]. IEEE Transactions on Evolutionary Computation ,2002,6 : 182 - 197.
  • 7SCHOTF J R. Fault tolerant design using single and multi-criteria genetic algorithms[ D]. Boston :Massachusetts Institute of Technology,1995.
  • 8SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms [ C ]// Proceedings of the First International Conference on Genetic Mgorithms. Hillsdale : L. Erlbaum Associates, Inc, 1985 : 93 - 100.
  • 9ZITZLER E,THIELE L. Multiobjective Evolutionary Algorithms:A Comparative Case Study and the Strength 1%reto Approach [ J]. IEEE Transactions on Evolutionary Computation, 1999,3 (4) :257 - 271.
  • 10SRINIVAS N ,DEB K. Multiohjective optimizationusing nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994,2(3) :221 -248.

引证文献14

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部