期刊文献+

基于Multibandelets的自适应图像压缩 被引量:2

Adaptive Image Compression Based on Multibandelets
下载PDF
导出
摘要 为了在图像压缩时更好地保护具有方向性的几何结构信息,该文构建了一种新的基函数,称为Multibandelets,并结合Shannon编码用于自然图像的压缩。实验结果表明:与多小波、具有同样消失矩的小波和Bandelets相比较,基于Multibandelets的图像压缩在视觉效果和客观衡量指标两方面都有改善,尤其对具有方向性的细节和纹理信息具有更好的表示。 For protecting directional geometric structure information, a novel basis function called multibandelets is presented in this paper. And then an image compression algorithm is proposed based on the multibandelet transform and Shannon encode. Experiments show that the multibandelets-based compression provides improvements both in visual effects and quantitative analysis, especially for the detail information containing directional geometric structures. The compared methods are multiwavelets, and those of the wavelets and bandelets with the same vanishing moments, respectively.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第7期1615-1619,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60702062) 河南省创新型科技人才队伍建设工程(084100510012) 河南省教育厅自然科学基金(2008B510001)资助课题
关键词 图像压缩 Multibandelet 几何方向分析 Image compression Multibandelet Geometric directional analysis
  • 相关文献

参考文献4

二级参考文献25

  • 1孙文方,赵亦工,宋蓓蓓.基于第二代Bandelets变换的静止图像压缩[J].西安交通大学学报,2006,40(8):950-954. 被引量:6
  • 2李伟,杨晓慧,石光明,焦李成.基于几何多尺度方向窗的小波图像去噪[J].西安电子科技大学学报,2006,33(5):682-686. 被引量:8
  • 3[1]DeVore R.Nonlinear Approximation[M].Acta Numerica,U.K.:Cambridge University Press,1998.
  • 4[2]Do M N,Vetterli M.The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J].IEEE Transactions on Image Processing,2005,14(2).
  • 5[3]Pennec E L,Mallat S.Image Compression with Geometrical Wavelets.[C]//Proc.of ICIP'2000.Vancouver,Canada,September,2000:661 -664.
  • 6[4]Pennec E L,Mallat S.Sparse Geometrical Image Approximation with Bandelets[J].IEEE Transaction on Image Processing,2005,14(4):423 -438.
  • 7[5]Aujol J F,Aubert G,Blanc-Féraud L,et al.Image Decomposition into a Bounded Variation Component and an Oscillating Component[J].Journal of Mathematical Imaging and Vision,2005,22(1):71-88.
  • 8[6]Rudin L,Osher S,Fatemi E.Nonlinear Total Variation Based Noise Removal Algorithms[J].Physica D,1992,60:259-268.
  • 9[7]Cohen A,Daubechies I,Feauveau J C.Biorthogonal Bases of Compactly Supported Wavelets[J].Comm.Pure Applied Math.,1992,45:485-560.
  • 10[9]Peyré G,Mallat S.Surface Compression with Geometric Bandelets[J].ACM Trans.on Graphics,2005,24(3):601-608.

共引文献22

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部