期刊文献+

多目标跟踪的核粒子概率假设密度滤波算法 被引量:10

A Kernel Particle Probability Hypothesis Density Filter for Multi-target Tracking
原文传递
导出
摘要 提出一种新的多目标跟踪算法:核粒子概率假设密度滤波算法(KP-PHDF)。算法的创新点在概率假设密度滤波算法(PHDF)的目标状态提取步骤,以粒子概率假设密度滤波算法为框架,并运用结合了mean-shift算法的核密度估计(KDE)理论进行概率假设密度(PHD)分布的二次估计、提取PHD峰值位置作为目标状态估计值。分析与多目标跟踪(MTT)仿真的结果表明,与现有序列蒙特卡罗概率假设密度滤波算法(SMC-PHDF)相比,在相同仿真条件下新算法的估计精度提高30.5%。 A new multi-target tracking (MTT) algorithm called the kernel particle probability hypothesis density filter (KP-PHDF) is proposed for MTT applications. Based on the particle probability hypothesis density filter framework, the algorithm utilizes the kernel density estimation (KDE) theory and the mean-shift algo- rithm to further estimate the probability hypothesis density (PHD) and then to extract target state estimates. The simulation results of the proposed method show that, compared with the sequential Monte Carlo probability hypothesis density filter (SMC-PHDF), the tracking accuracy of the proposed method is increased by 30. 5 % in terms of miss distance.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第7期1264-1270,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60572023)
关键词 信号处理 粒子概率假设密度滤波算法 核密度估计 仿真 多目标跟踪 signal processing particle probability hypothesis density filter kernel density estimation simulation multi-target tracking
  • 相关文献

参考文献2

二级参考文献30

  • 1Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Transaction on Signal Processing, 2005, 53(7): 2279 -2289.
  • 2Schon T, Karlsson R, Gustafsson F. The marginalized particle filter in practice[R]. Linkoping: Linkoping University, LiTH-ISY-R 2715, 2005.
  • 3Anderson B D O, Moore J B. Optimal filtering[M]. Engle wood Ciffs, NJ: Prentice-Hall, 1979.
  • 4Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non Gaussian Bayesian state estimation [J]. IEE Proceedings F, 1993, 140(2): 107-113.
  • 5Arulampalam M S, Maskelli S, Gordon N, et al. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 6Karlsson R, SchOn T. Complexity analysis of the marginalized particle filter[R]. Linkoping: Linkoping University, LiTHISY-R-2611 , 2004.
  • 7Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 2001, 49(3), 613-624.
  • 8Doucet A. On sequential simulation-based methods for Bayes ian filtering[R]. CUED/F INFENG/TR. 310 (1998), 1998.
  • 9Panta K, Vo B, Singh S. Improved probability hypothesis density (PHD) filter for multitarget traeking[C] // Proceedings of the 2005 Third International Conference on Intelligent Sensing and Information Processing. 2005:213- 218.
  • 10Hoffman J R, Mahler R P S. Multitarget miss distance via optimal assignment[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2004, 34(3): 327- 336.

共引文献25

同被引文献215

引证文献10

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部