期刊文献+

有色噪声下基于Unscented粒子滤波的语音增强方法 被引量:6

Speech enhancement based unscented particle filter with non-gaussian noises
下载PDF
导出
摘要 针对含有色噪声的语音,提出了一种基于Unscented粒子滤波的单通道语音增强方法。采用时变自回归模型(TVAR)对干净语音建模,通过Unscented粒子滤波器估计AR模型的参数并滤除有色噪声。与大多数常用的粒子滤波选择的建议分布不同,Unscented粒子滤波器采用Unscented卡尔曼滤波器生成粒子滤波的建议分布。由于在粒子的更新过程中考虑了最近的观测值,Unscented粒子滤波器能够在粒子数少于传统粒子滤波算法所需粒子数目的基础上改善估计的性能。仿真实验结果表明,在有色噪声背景下该算法具有良好的语音增强效果。 Considering speech signals with color noises, a novel speech enhancement technique is proposed based on unscented particle filter (UPF). The technique models speech signals with time-varying autoregressive (TVAR) models. Unscented particle filter is applied to estimate the parameters of AR model and filter color noises. Instead of most popular choice of proposal distribution, Unscented particle filter uses an Unscented Kalman filter (UKF) to generate the importance proposal distribution. It allows the particle filter to incorporate the latest observations into a prior updating routine so as to improve estimation performance greatly with fewer particles. Simulation results demonstrate that the proposed algorithm possesses good performance with color noises.
出处 《电波科学学报》 EI CSCD 北大核心 2009年第3期476-481,共6页 Chinese Journal of Radio Science
基金 中国博士后基金(No.20070411054) 江苏省博士后基金(No.0701017B) 国家自然科学基金(No.60871013 No.60701005) 高等学校博士学科点专项科研基金(No.20070288043)
关键词 语音增强 Unscented粒子滤波 时变自回归模型 UNSCENTED卡尔曼滤波 speech enhancement Unscented particle filter time-varying autoregressive models Unscented Kalman filter
  • 相关文献

参考文献2

二级参考文献46

  • 1LIM J,OPPENHEIM A.All-pole modeling of degraded speech[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1978,26(3):197-210.
  • 2EPHRAIM Y.A bayesian estimation approach for speech enhancement using hidden Markov models[J].IEEE Transactions on Signal Processing,1992,40(4):725-735.
  • 3PALIWAL K,BASU A.A speech enhancement method based on Kalman filtering[A].IEEE ICASSP1987[C].Dallas,Texas,USA,1987.177-180.
  • 4GANNOT S,BURSHTEN D,WEINSTEIN E.Iterative and sequential Kalman filter-based speech enhancement algorithms[J].IEEE Transactions on Speech and Audio Processing,1998,6(4):373-385.
  • 5VERMAAK J,ANDRIEU C,DOUCET A.Particle methods for bayesian modeling and enhancement of speech signals[J].IEEE Transactions on Speech and Audio Processing,2002,10(3):173-185.
  • 6王宏禹.非平稳随机信号处理[M].北京:国防工业出版社,1999.
  • 7PAPOULIS A,PILLAI S.Probability,Random Variables and Stochastic Processes[M].McGraw-Hill,2002.
  • 8ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 9MACCORMICK J,ISARD M.Partitioned sampling,articulated objects and interface-quality hand tracking[A].European Conference on Computer Vision[C].Dublin,Ireland,2000.3-19.
  • 10DOUCET A,GORDON N,KRISHNAMURTHY V.Particle filters for state estimation of jump Markov linear systems[J].IEEE Transactions on Signal Processing,2001,49(3):613-624.

共引文献9

同被引文献48

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部