期刊文献+

基于缺陷特征与种子填充的轮毂缺陷检测方法 被引量:7

Approach to detecting defects in wheels based on flaws' characteristics and seeded region growing method
下载PDF
导出
摘要 基于轮毂缺陷目标的尺度特征,利用纵横两个方向的"山峰"定位,获得轮毂铸件缺陷像素小块,并提取出缺陷目标区域;对目标区域进一步提取种子点,建立生长障碍,对种子进化处理以及图像二值化,利用改进的种子填充法将缺陷用二值图像完整清晰地表达出来,实现基于缺陷目标特征与种子填充法的轮毂铸件缺陷检测方法.以实际检测中4种常见的不同类型缺陷、不同结构部位、不同背景等的轮毂缺陷图像作为实例,对100幅缺陷图像进行算法验证.实验结果表明,该算法不需要对图像进行预处理,可以检测各种缺陷类型,对对比度低、高噪声、产品结构和图像背景复杂、光照不均匀的图像也能进行处理,不需要标准参照图片,运算速度满足工业应用的要求. The method presented was based on the characteristics of the size of wheel flaws, using horizontal and vertical hill-locating to get blocks of flaw pels, and to pick up the goal flaw-located areas. The goal flaw-located image was used to get the seeds, growing obstacles, seed-evolution and initial casting image thresholding. The binary-valued image obtained by the improved seeded region growing method displayed the flaws of the casting image accurately. Four samples, i. e. , four images with different flaw types, different parts of casting and different backgrounds, were used to present the method. And it was tested by 100 images. The result denominated many advantages of the method. It did not need complicated pretreatment, but could deal with diverse types of flaws. Images with poor quality (i. e. , poor-contrast, high noise, complicated structures and backgrounds, asymmetrical illumination and ete) could be processed, and reference images were not needed. The processing speed met the demand of industry uses.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第7期1230-1237,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50775201) 浙江省自然科学基金资助项目(Y107431)
关键词 山峰定位 目标区域 种子填充 图像二值化 hill-locating goal area seed filling image thresholding
  • 相关文献

参考文献10

  • 1HEROLD F,BAVENDIEK K,GRIGAT R R.A thirdgeneration automatic defect recognition system[].th World Conference on Nondestructive Testing.2004
  • 2HECKER H.Ein neues verfahren zur robustenr ntgenbildauswertung in der automatischenguβteilprüfung[]..1995
  • 3KOSANETZKY J M,PUTZBACH H.Modern X-rayinspection in the automotive industry[].Proceedingsof th World Conference on NDT.1996
  • 4REBUFFEL V,SOOD S.Defect detection method indigital radiography for porosity in magnesium castings[].th European Conference on NDT.2006
  • 5MERY D,FILBERT D,PARSPOUR N.Improvementin automated aluminum casting inspection by findingcorrespondence of potential flaws in multiple radioscopicimages[].Proceedings of th World Conference onNDT.2000
  • 6BERNSEN J.Dynamic thresholding of gray-level ima-ges[].Proceedings of th International Conferenceon Pattern Recognition.1986
  • 7ECKELT B,MEYENDORF N,MORGNER W,et al.Use of automatic image processing for moni-toring of welding processes and weld inspection[].Proceedings of th InternationalWorld Conference on Non-destructive Testing.1989
  • 8D Mery.Flaw simulation in castings inspection by radioscopy[].Insight.2001
  • 9Mery D.Simulation of defects in aluminium castings using CAD models of flaws and real X-ray images[].Insight.2005
  • 10Xiaoli Li,S.K.Tso et al.Improving Automatic Detection of Defects in Castings by Applying Wavelet Technique[].IEEE Transactions on Industrial Electronics.2006

同被引文献54

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部