摘要
In this study, the barite nanoparticles were successfully modified with stearate and the influence of stearate addition on the performance of barite nanoparticles was systematically investigated. The products were characterized by activating factor analysis, contact angle test, surface energy calculation, sedimentation rate calculation, rheological measurement, and FT-IR analysis, etc. As the quantity of added stearate increased, both the activating factor and contact angle of barite nanoparticles increased first then decreased. When the stearate content was 5% of the mass of barite nanoparticles, the activating factor and water contact angle of modified particles reached maximum value, 97% and 126% respectively. At this time, the sedimentation rate reached minimum, and so did the surface energy. The rheological test reveals that the viscosity of modified barite nanoparticles/petronol system decreases greatly, indicating the surface performance of barite nanoparticles has changed from hydrophilicity to lipophilicity after modification. C=O and COO stretching vibration peaks were found in the FT-IR spectra, which proves that the stearate has combined onto the surface of barite nanoparticles. Finally, according to the zeta potential result of unmodified barite, the possible modification mechanism was provided.
In this study, the barite nanoparticles were successfully modified with stearate and the influence of stearate addition on the performance of barite nanoparticles was systematically investigated. The products were characterized by activating factor analysis, contact angle test, surface energy calculation, sedimentation rate calculation, rheological measurement, and FT-IR analysis, etc. As the quantity of added stearate increased, both the activating factor and contact angle of barite nanoparticles increased first then decreased. When the stearate content was 5% of the mass of barite nanoparticles, the activating factor and water contact angle of modified particles reached maximum value, 97% and 126% respectively. At this time, the sedimentation rate reached minimum, and so did the surface energy. The rheological test reveals that the viscosity of modified barite nanoparticles/petronol system decreases greatly, indicating the surface performance of barite nanoparticles has changed from hydrophilicity to lipophilicity after modification. C=O and COO stretching vibration peaks were found in the FT-IR spectra, which proves that the stearate has combined onto the surface of barite nanoparticles. Finally, according to the zeta potential result of unmodified barite, the possible modification mechanism was provided.
基金
supported by the International Corporation Project (Grant No.07SU07001)
the Science Foundation of Science and Technology Commission of Shanghai Municipality (Grant No.0552nm011)