期刊文献+

Asymptotic behavior of 2D generalized stochastic Ginzburg-Landau equation with additive noise 被引量:1

Asymptotic behavior of 2D generalized stochastic Ginzburg-Landau equation with additive noise
下载PDF
导出
摘要 The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H^1 0. The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H^1 0.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第8期945-956,共12页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China (No. 10661002) the NaturalScience Foundation of Guangxi (No. 0832065) the Excellent Talents Fund of Guangxi (No. 0825)
关键词 2D generalized stochastic Ginzburg-Landau equation random dynamical system random attractor 2D generalized stochastic Ginzburg-Landau equation, random dynamical system, random attractor
  • 相关文献

参考文献12

  • 1Hans Crauel,Arnaud Debussche,Franco Flandoli.Random attractors[J].Journal of Dynamics and Differential Equations.1997(2)
  • 2Hans Crauel,Franco Flandoli.Attractors for random dynamical systems[J].Probability Theory and Related Fields.1994(3)
  • 3LIDonglong,GUOBoling.On the Cauchy problem of generalized complex Ginzburg-Landau equation in three dimensions[J].Progress in Natural Science:Materials International,2003,13(9):658-665. 被引量:5
  • 4Li, Donglong,Dai, Zhengde.Long time behavior of solution for generalized Ginzburg-Landau equation[].Journal of Mathematics Analysis and Applications.2007
  • 5Doering C,Gibbon J D,Holm D,et al.Low-dimensional behavior in the complex Ginzburg-Landau equation[].Nonlinearity.1988
  • 6Bartuccelli M,Constantin P,Doering C,et al.On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation[].Physica D Nonlinear Phenomena.1990
  • 7Doering C R,Gibbon J D,Levermore C D.Weak and strong solutions of the complex Ginzburg-Landau equation[].Physica D Nonlinear Phenomena.1994
  • 8Ghidaglia,J. M.,Heron,B.Dimension of the attractor associated to the Ginzburg-Landau equation[].Physica D Nonlinear Phenomena.1987
  • 9Levermore,C. D.,Oliver,M.,Dieft,P.,Wayne,C. E.,Levermore,C. D.The complex Ginzburg-landau equation as a model problem[].Probabilistic and Dynamical Systems Methods for PDEs.1996
  • 10Michele V. Bartuccelli John D. Gibbon and Marcel Oliver.Length scales in solutions of the complex Ginzburg-Landau equation[].Physica D Nonlinear Phenomena.1996

二级参考文献7

  • 1[1]Doering, C. et al. Low-dimensional behavior in the complex Ginzburg-Landau equation. Nonlinearity, 1988, 1: 279.
  • 2[2]Ghidaglia, J. M. et al. Dimension of the attractor associated to the Ginzburg-Landau equation. Phys. D, 1987, 28: 282.
  • 3[3]Bartuccelli, M. et al. On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation. Phys. D, 1990, 44: 421.
  • 4[4]Doering, C. R. et al. Weak and strong solutions of the complex Ginzburg-Landau equation. Phys. D, 1994, 71: 285.
  • 5[5]Guo, B. et al. Finite dimensional behavior of the generalized Ginzburg-Landau equation. Progress in Natural Science, 1994, 4: 423.
  • 6[6]Henry, D. Geometric Theory of Semilinear Parabolic Equation. Berlin: Springer-Verlag, 1981.
  • 7[7]Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equation. Berlin: Springer-Verlag, 1983.

共引文献4

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部