期刊文献+

基于FLNDO的近空间飞行器鲁棒最优预测控制(英文) 被引量:6

Robust Optimal Predictive Control for a Near-Space Vehicle Based on Functional Link Network Disturbance Observer
下载PDF
导出
摘要 针对有强烈干扰和不确定因素影响的近空间高超声速飞行器,提出了一种鲁棒最优广义预测控制律。控制律由最优广义预测控制律(OGPC)和一种新的泛函连接网络干扰观测器(FLNDO)构成。输出的有限时域预测由泰勒级数的展开实现。飞行中的未建模动态以及未知干扰由FLNDO来估计,并且文中也给出了FLNDO和闭环系统的稳定性分析。仿真结果表明对于姿态角和角速率的跟踪问题,设计的控制器达到了满意的控制效果,并且也成功实现了对干扰的抑制以及参数变化的鲁棒性要求。 A robust optimal generalized predictive control (OGPC) law was presented for a near-space hypersonic vehicle (NHV) in the presence of strong disturbances and uncertainties. The control law consisted of the OGPC law and a new functional link network disturbance observer (FLNDO). The output prediction defined on finite horizon was carried out via Taylor series expansion. The unmodeled dynamics and unknown disturbances in flight were estimated by the FLNDO. The paper also provided stability analyses of the FLNDO and close-loop system. The simulation results show that the satisfactory performance of the controller for attitude angles tracking, the robustness to parameters variations and the disturbance rejection are successfully accomplished.
出处 《宇航学报》 EI CAS CSCD 北大核心 2009年第4期1489-1497,共9页 Journal of Astronautics
基金 国家自然科学基金重大研究计划项目(90716028)
关键词 近空间高超声速飞行器 非线性不确定系统 最优广义预测控制 泛函连接网络 干扰观测器 Near-space hypersonic vehicle Nonlinear uncertain system Optimal generalized predictive control Functional link network Disturbance observer
  • 相关文献

参考文献1

二级参考文献9

  • 1[1]Tanaka K,Ikoda T,Wang H O.Robust stabilization of a class of un-certain nonlinear systems via fuzzy control:quadratic stabilizability,H∞ control theory,and linear matrix inequalities[J].IEEE Transac-tions on Fuzzy Systems,1996,4(1):1-13.
  • 2[2]Taniguchi T.Tanaka K,Ohtake H,et al.Model construction,rule reduction,and robust compensation for generalized form of Takagi-Sugeno fuzzy systems[J].IEEE Transactions on Fuzzy Systems,2001,9(4):525-538.
  • 3[3]Tanaka K,Hod T,Wang H O.A multiple lyapunov function ap-proach to stabilization of fuzzy control systems[J].IEEE Transactions on Fuzzy Systems,2003,11(4):582-589.
  • 4[4]Lin C,Wang Q G,Lee T H.Fuzzy descriptor systems and nonlinear model following control[J].IEEE Transactions on Fuzzy Systems,2006,14(4):542-551.
  • 5[5]Wei X J,Jing Y W.A novel design of fuzzy tracking control for non-linear time-delay systems[C]// Proc.2004 IEEE World Automation Congress,Piscataway:IEEE,2004:263-268.
  • 6[6]Tseng C S.Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay[J].IEEE Transactions on Fuzzy Systems,2006,14(1):58-70.
  • 7[9]Boyd S,Ghaoui L E,Feron E,et al.Linear matrix inequnlities in systems and control theory[M].Philadelphia:SIAM,1994:91-100.
  • 8[11]Shtessel Y,McDuffie J.Sliding mode control of the X-33 vehicle in launch and reentry modes[R].AIAA -98-4414,1998.
  • 9王金枝,张纪峰.线性系统静态输出反馈镇定的LMI方法(英文)[J].控制理论与应用,2001,18(6):843-846. 被引量:16

共引文献7

同被引文献58

引证文献6

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部