期刊文献+

抗体修正免疫算法对高维0/1背包问题的应用 被引量:11

Immune algorithm with antibody-repaired and its application for high-dimensional 0/1 knapsack problem
下载PDF
导出
摘要 遗传算法极难处理高维约束优化问题,故借鉴免疫系统机理,提出一种抗体修正免疫算法解决一类高维约束优化问题。该算法设计的关键在于抗体亲和力由抗体浓度及群体状态决定;可行抗体被克隆、突变;非可行抗体的基因按价值密度由小到大逐一修正。选取两种已有的智能算法(ETGA、ISGA),通过不同约束条件下的高维0/1背包问题的仿真比较。结果表明,该算法较其他算法能更快地跟踪最优值,具有较强的勘测和开采能力。 It' s difficulty to deal with high-dimensional optimization problem constrained for GA, this paper proposed an immune algorithm with antibody-repaired, based on biological immune system' s functions, to solve a class of high-dimensional optimization problem constrained. The key of algorithm is: the affinity of antibodies had relation to the antibody' s density and current population, the feasible antibodies were cloned and mutated, repaired the infeasible antibodies by means of the increasing sorting of price consistency of antibodies gene. In numerical experiments, selected two existing intelligent algorithms (ETGA , ISGA) to compare with the designed algorithm, tested high-dimensional 0/1 knapsack problems with different con- straints. The results indicate that the new algorithm can track rapidly the optimum, and also show the predominant exploitation and exploration capability of algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2009年第8期2921-2923,2930,共4页 Application Research of Computers
基金 安顺学院青年一般项目基金资助(20080514)
关键词 高维0/1背包问题 约束优化 抗体修正 免疫算法 high-dimensional 0/1 knapsack problem constrained optimization antibody repair immune algorithms
  • 相关文献

参考文献4

二级参考文献34

  • 1史亮,邹谊,尹燕,庄镇泉.基于主动进化遗传算法的模糊聚类技术[J].小型微型计算机系统,2005,26(2):204-208. 被引量:5
  • 2罗印升,李人厚,张维玺.基于免疫机理的动态函数优化算法[J].西安交通大学学报,2005,39(4):384-388. 被引量:6
  • 3[1]BINGUL Z.Adaptive genetic algorithms applied to dynamic multiobjective problems[J],Applied Soft Computing,7(2007) 791-799.
  • 4[2]FARINA M,DEB K,AMATO P.Dynamic multiobjective optimization problems:test case,approximations,and applications[J].IEEE Transactions on Evolutionary Computation,2004,8(5):425-442.
  • 5[3]ZITZLER E,LAUMANNS M,THIELE L.Speaii:improving the strength pareto evolutionary algorithm[A].Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Problems[C].Athens,Greece,2001.
  • 6[4]DEB K,AGRAWAL S,PRATAP A,et al.A fast elitist nondominated sorting genetic algorithm for multiobjective optimization; NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 7[5]JIN Y,BRANKE J.Evolutionary optimization in uncertain environments-A survey[J].IEEE Transactions on Evolutionary Computation,2005,9(3):303-317.
  • 8[6]AMATO P,FARINA M.An alife-inspired evolutionary algorithm for dynamic multiobjective optimization problems[A].In WSC[C].[S.l.],2003.
  • 9[7]HATZAKIS I,WALLACE D.Dynamic multiobjective optimization with evolutionary algorithm:a forward-looking approach[A].GECCO'06[C].Washington,USA,2006.
  • 10[8]DEB K,UDAYA B R N,KARTHIK S.Dynamic multiobjective optimization and decision-making using modified NSGA-Ⅱ:a case study on hydro-thermal power scheduling bi-objective optimization problems[R].KanGAL Report,2006.

共引文献36

同被引文献92

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部