期刊文献+

味精废水生物除碳脱氮动力学特性的研究 被引量:2

Kinetic Characteristics of Biological Nitrogen and Carbon Removal from Monosodium Glutamate Wastewater
下载PDF
导出
摘要 为优化某味精废水处理工程的操作,研究了其除碳脱氮动力学特性。结果表明,对COD的最大化去除速率为0.110kgCOD/(kgVSS·h),最大容积去除速率与实际容积负荷之比为17.28~21.12.最大比去除速率与实际污泥负荷之比为13~21,饱和常数怨为202mgCOD/L;对氨氮的最大比去除速率为0.0141kgNH4^+-N/(kgVSS·h),最大容积去除速率与实际容积负荷之比为8.86~11.25,最大比去除速率与实际污泥负荷之比为7—11,K为19.1mgNHf—N/L,表明该工程去除COD和氨氮的潜力还很大,容易实现达标排放。当以葡萄糖为碳源时,对硝态氮的最大比去除速率为0.0140kgNO3^_-N/(kgVSS·h),Ks为13.5mgNO3^-N/L;当以醋酸盐为碳源时最大比去除速率为0.0244kgNO3^-N/(kgVSS·h),Ks为12.0mgNO3^--N/L,表明醋酸盐比葡萄糖更有利于提高反硝化速率和强化脱氮效果。 The kinetic characteristics of biological nitrogen and carbon removal from monosodium glutamate wastewater were investigated to optimize a treatment project. For COD, the maximum specific removal rate (Vmax) is 0. 110 kgCOD/(kgVSS·h), the ratio of maximum volumetric removal rate to the actual loading rate is 17.28 to 21.12, the ratio of Vmax to the actual sludge loading rate is 13 to 21, and the value for saturation constant (Ks) is 202 mgCOD/L. For NH4+ - N, the Vmax is 0. 014 1 kgNH4^+ - N/ ( kgVSS· h) , the ratio of maximum volumetric removal rate to the actual loading rate is 8.86 to 11.25, the ratio of vmax to the actual sludge loading rate is 7 to11, and the Ks is 19.1 mgNH4^+ -N/L. These show that this project has enormous potential for removal of COD and ammonia nitrogen. When glucose is used as carbon source, the Vmax and Ks for nitrate nitrogen are 0. 014 0 kgNO3- - N/( kgVSS·h) and 13.5 mgNO3^--N/L respectively. When acetate is used as carbon source, the Vmax and Ks are 0. 024 4 kgNO3 -N/(kgVSS · h) and 12.0 mgNO3^- -N/L respectively. These show that acetate is better than glucose in increasing denitrification rate and enhancing nitrogen removal efficiency.
出处 《中国给水排水》 CAS CSCD 北大核心 2009年第15期60-62,66,共4页 China Water & Wastewater
基金 国家高技术研究发展计划(863)项目(2006AA06Z322) 浙江省重大科技攻关项目(2003C13005)
关键词 味精废水 生物除碳 生物脱氮 动力学 monosodium glutamate wastewater biological carbon removal biological nitrogen
  • 相关文献

参考文献3

二级参考文献9

  • 1卢刚,郑平.气升式内循环反应器短程硝化控制策略的研究[J].浙江大学学报(工学版),2005,39(4):542-546. 被引量:6
  • 2Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts [J].Environmental Pollution, 1998, 102(31):717-756.
  • 3Van Kempen R, Mulder J W, Uijterlinde C A, et al.Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001, 44(1): 145-152.
  • 4Ye R W, Thomas S M. Microbial nitrogen cycles:physiology, genomics and applications [J]. Current Opinion in Microbiology, 2001, 4(3) : 307-312.
  • 5Downing A L, Hopwood A P. Some observation on the kinetics of nitrifying activated sludge plants [J]. Schweizerische Zeitschrift fur Hydrologie, 1964, 26: 271-276.
  • 6Hagopian D S, Riley J G. A closer look at the bacteriology of nitrification [J]. Aquacultural Engineering, 1998,18 : 223-244.
  • 7王凯军,活性污泥膨胀的机理与控制,1992年
  • 8郑平,冯孝善,M.S.M.Jetten,J.G.Kuenen.ANAMMOX流化床反应器性能的研究[J].环境科学学报,1998,18(4):367-372. 被引量:51
  • 9卢刚,郑平.内循环好氧颗粒污泥床硝化反应器氮亏损研究[J].四川大学学报(工程科学版),2004,36(2):36-40. 被引量:5

共引文献14

同被引文献24

  • 1Berry E A, Trumpower B L. 1987. Simultaneous determination of heroes a, b, and c from pyridine hemochrome spectra [ J ]. Analytical Biochemistry, 161 ( 1 ) : 1 - 15.
  • 2Breton J, Berks B C. 1994. Characterization of the paramagnetic iron- containing redox centers of Thiosphaera pantotropha periplasmic nitrate reductase[ J]. FEBS Lett. , 345:76-80.
  • 3Johnstone B H, Jones R D. 1988. Physiological effects of long-term energy-source deprivation on the survival of a marine ehemolithotrophic ammonium-oxidizing bacterium [ J ]. Marine Ecology Progress Series, 49:295-303.
  • 4Diab S, Koehba M, Mires D, et al. 1992. Combined intensive-intensive (CIE) pond system. A, inorganic nitrogen transformations [ J ]. Aquaculture, 101 (1/2) :33-39.
  • 5Laurin V, Labbe V, Juteau P, et al. 2006. Long-term storage conditions for carriers with denitrifying biomass of the fluidized, methanol-fed denitrification reactor of the Montreal Biodome, and the impact on denitrifying activity and bacterial population [ J ]. Water Research, 40(9) : 1836-1840.
  • 6Okabe S, Satoh H, Watanabe Y. 1999. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes [ J]. Applied and Environmental Microbiology, 65 (7) :3182-3191.
  • 7Park H D, Noguera D R. 2007. Characterization of two ammonia- oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations [ J ]. Journal of Applied Microbiology, 102 : 1401-1417.
  • 8Schmidt I, Look C, Bock E, et al. 2004. Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas [ J ]. Microbiology, 150 : 1405-1412.
  • 9Schramm A, Larsen L H, Revsbech Np, et al. 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes [ J ]. Applied and Environmental Microbiology, 62(12) :4641-4647.
  • 10Siddiqui R A, Warnecke-Eberz U. 1993. Structure and function of a periplasmic nitrate in Alcaligenes eutrophus H16 [ J ]. Journal Bacteriology, 175:5867-5876.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部