摘要
讨论非线性(在鞍点条件成立时)H∞控制的(干扰抑制问题的)粘性解法.此方法基于对策论和Hamilton-Jacobi-Isaacs(HJI)不等式.主要结果分三个方面.首先,是将所求的关于HJI不等式的解推广到不可微的粘性解情形.随后,讨论了此情形下的H∞状态控制器对被控系统的镇定问题.最后给出了求解该问题的近似逼近的理论依据和算法的初步讨论.
The H ∞ problem of nonlinear control systems is studied in the sense of viscocity solution. The motivation on the study of viscocity solution of nonlinear H ∞ control with the saddle point condition is due to the difficulty in the analysis of smooth solutions in some cases. The method is based on the game theory and Hamilton Jacobi Issacs (HJI) inequality. The main results are composed of three parts.The solution of HJI inequality of disturbance attenuation has been extended to the case without any assumption of smoothness. A control law in the light of the viscocity optimal solution is given, with a proof of the system stabilization when external disturbance vanishes. At last, some analyses on approximate algorithms are proposed for the nonlinear H ∞ problems and a draft approxiamte polynomial algorithm is described.
出处
《自动化学报》
EI
CSCD
北大核心
1998年第4期447-453,共7页
Acta Automatica Sinica
基金
国家自然科学基金
关键词
非线性
粘性解
近似逼近
H∞控制
鲁棒控制
Nonlinear H ∞ , saddle point, viscocity solution,approxiamte algorithm.