期刊文献+

METHOD FOR QUICKLY INFERRING THE MECHANISMS OF LARGE-SCALE COMPLEX NETWORKS BASED ON THE CENSUS OF SUBGRAPH CONCENTRATIONS 被引量:1

METHOD FOR QUICKLY INFERRING THE MECHANISMS OF LARGE-SCALE COMPLEX NETWORKS BASED ON THE CENSUS OF SUBGRAPH CONCENTRATIONS
原文传递
导出
摘要 A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a census of subgraph numbers has some drawbacks,especially the needfor a runtime increasing strongly with network size and network density.In this paper,an improvedmethod has been proposed by introducing a census algorithm of subgraph concentrations.Networkmechanism can be quickly inferred by the new method even though the network has large scale andhigh density.Therefore,the application perspective of mechanism-inferring method has been extendedinto the wider fields of large-scale complex networks.By applying the new method to a case of proteininteraction network,the authors obtain the same inferring result as the existing method,which approvesthe effectiveness of the method.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第2期252-259,共8页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No. 70401019
关键词 Large-scale complex networks mechanism-inferring model evaluation subgraph census. 网络方法 机制 普查 浓度 子图 蛋白质相互作用 推理方法 预测性能
  • 相关文献

参考文献15

  • 1M. E. J. Newman, The structure and function of complex networks, SIAM Review, 2003, 45(2): 167-256.
  • 2R. Albert and A. L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 2002, 74(1): 47- 97.
  • 3D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 1998, 393(6684): 440-442.
  • 4A. L. Barabgsi and R. Albert, Emergence of scaling in random networks, Science, 1999, 286(10): 509 512.
  • 5M. Middendorf, E. Ziv, and C. H. Wiggins, Inferring network mechanisms: The Drosophila melanogaster protein interaction network, PNAS USA, 2005, 102(9): 3192 3197.
  • 6Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an appli- cation to boosting, J. of Computer and System Sciences, 1997, 55(1): 119- 139.
  • 7A. Vazquez, R. Dobrin D. Sergi, J. P. Eckmann, Z. N. Oltvai, and A. L. Barabgsi, The topological relationship between the large-scale attributes and local interaction patterns of complex networks, PARAS USA, 2004, 101(52): 17940-17945.
  • 8W. K. Xiao, J. Ren, F. Qi, Z. W. Song, M. X. Zhu, H. F. Yang, H. Y. Jin, B. H. Wang, and T. Zhou, Empirical study on clique-degree distribution of networks, Phys. Rev. E, 2007, 76: 1-4.
  • 9N. Przulj, Biological network comparison using graphlet degree distribution, Bioinformatics, 2006, 23(2): 177 183.
  • 10A. Vazquez, J. G. Oliveira, and A. L. Barabgsi, Inhomogeneous evolution of subgraphs and cycles in complex networks, Phys. Rev. E, 2005, 71:1- 4.

同被引文献15

  • 1Newman M E J. The structure and function of com- plexnetworks[J]. SlAM Review, 2003, 45(2):167- 256.
  • 2Newman M E J. The physics of networks[J]. Physics Today, 2008, 61(11): 33-38.
  • 3Barabcisi A L. Scale-free networks: A decade and be- yond[J]. Science, 2009, 325(5939): 412-413.
  • 4Han J D, Dupuy D, Bertin N, et al. E{fect oI sampling on topology predictions of protein-protein interaction networks[J]. Nature Bioteehnology, 2005,23(7): 839 844.
  • 5Stumpf M P, Wiuf C, May R M. Subnets of scale- free networks are not scale-free: Sampling properties of networks[J]. Proceedings of the National Academy of Sciences, USA, 2005, 102(12): 4221-4224.
  • 6Lee S H, Kim P, Jeong H. Statistical properties of sampled networks[J]. Physical Review E, 2006, 73 (1): 016102.
  • 7Yoon S, Lee S, Yook S H, etal. Statistical proper ties of sampled network by random walks[J] . Physi- cal Review E, 2007, 75(4): 046114.
  • 8Newman M E J. Ego-centered networks and the rip- ple effect[J]. Social Networks, 2003, 25(1): 83-95.
  • 9Airoldi E M, Bai X, Carley K M. Network sampling and classification: An investigation of network model representations[J]. Decision Support Systems, 2011, 51(3) :506-518.
  • 10Middendorf M, Ziv E, Wiggins C H. Inferring net- work mechanisms: the Drosophila melanogaster pro- tein interaction network [J]. Proceedings of the Na- tional Academy of Sciences, USA, 2005, 102 (9): 3192-3197.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部