期刊文献+

Failure mode and strength anisotropic characteristic of stratified rock mass under uniaxial compressive situation 被引量:4

Failure mode and strength anisotropic characteristic of stratified rock mass under uniaxial compressive situation
下载PDF
导出
摘要 A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation. A stratified rock mass model was founded by FLAC3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to β; while β falls in the range of 30°-70°, σc varies little. When φ j<β<90°. (φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β≤φ j or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.
出处 《Journal of Central South University》 SCIE EI CAS 2009年第4期663-668,共6页 中南大学学报(英文版)
基金 Project (50099620) supported by the National Natural Science Foundation of China
关键词 stratified rock mass failure mode STRENGTH anisotropic characteristic numerical analysis 层状岩体 各向异性 失效模式 岩体强度 单轴压缩 数值模拟 特性 岩石样本
  • 相关文献

参考文献13

二级参考文献9

共引文献11

同被引文献28

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部