期刊文献+

稻瘟病菌假定的糖基水解酶62家族初步研究 被引量:4

A Preliminary Study of the Putative Glycosyl Hydrolase Family 62 in Magnaporthe grisea
下载PDF
导出
摘要 【目的】了解糖基水解酶62家族细胞壁降解酶系在稻瘟病菌致病中的作用。【方法】通过生物信息学方法对稻瘟病菌基因组中假定的糖基水解酶62家族成员进行基因结构、蛋白分泌特性及系统发育分析,并对其中一个成员MGG_01403.6进行过量表达、基因敲除分析。【结果】该家族共有8个成员,均具有细胞壁降解酶(糖基水解酶62家族)保守结构域,且均为胞外分泌蛋白;系统发育分析可以将这些成员分别聚类在两个进化分支中;成员间在不同侵染阶段表达模式有差异;MGG_01403.6过量表达和基因敲除均不影响稻瘟病菌的致病性。【结论】糖基水解酶62家族可能存在功能冗余作用,进一步的双突变或多突变可能是明确这类多基因家族基因功能的重要方法。 [Objective] Glycosyl hydrolase family 62 encode putative alpha-L-arabinofuranosidases, a group of cell-wall degrading enzymes which may involve in the fungal pathogenesis. To better understand the role of cell-wall degrading enzymes in pathogenesis, the putative glycosyl hydrolase family 62 in Magnaporthe grisea we characterized in this study. [Method] The bioinformaties tools were firstly used to analyze putative members in the annotated glycosyl hydrolase family 62, including their gene structure, protein secretion characters, and conduct a phylogenetic analysis. Then overexpression and knockout techniques were applied to further study the function of MGG01403.6, one of the 8 members in the family. [ Result ] The result showed that all the members are secreted proteins with cell-wall degrading enzyme (Glycosyl hydrolase family 62) domain. Phylogenetic analysis showed that 8 members of glycosyl hydrolase family 62 of the fungus could be classified into 2 clusters. Gene expression showed difference among family members after fungal infection. But gene knockout and overexpression of MGG_01403.6 had no effect on the fungal pathogenicity. [Conclusion] Functional redundancy may exist in glycosyl hydrolase family 62 members from Magnaporthe grisea. The double or multiple deletions are necessary for further characterization of the function of this multi-gene family.
出处 《中国农业科学》 CAS CSCD 北大核心 2009年第8期2754-2762,共9页 Scientia Agricultura Sinica
基金 国家自然科学基金(30471132 30671348)
关键词 稻瘟病菌 细胞壁降解酶 糖基水解酶62家族 Magnaporthe grisea cell-wall degrading enzymes glycosyl hydrolase family 62
  • 相关文献

参考文献28

  • 1Deising H B, Werner S, Wernitz M. The role of fungal appressoriain plant infection. Microbes andlnfection, 2000, 2(13): 1631-1641.
  • 2Dahler G, Barras F, Keen N. Cloning of genes encoding extracellular metalloproteases from Erwinia chrysanthemi EC16. Journal of Bacteriology, 1990, 172(10): 5803-5815.
  • 3Carlile A J, Bindschedler L V, Bailey A M, Bowyer P, Clarkson J M, Cooper R M. Characterization of SNP 1, a cell wall-degrading trypsin, produced during infection by Stagonospora nodorum. Molecular Plant-Microbe Interactions, 2000, 13(5): 538-550.
  • 4Gough C L, Dow J M, Barber C E, Daniels M J. Cloning of two endoglucanase genes of Xanthomonas campestris pv. Campestris: analysis of the role of the major endoglucanase in pathogenesis. Molecular Plant-Microbe Interactions, 1988, 1 (7): 275-281.
  • 5Herron S R, Benen J A E, Scavetta R D, Visser J, Jurnak F. Structure and function of pectic enzymes: Virulence factors of plant pathogens. Proceedings of the National Academy of Sciences, 2000, 97(16): 8762-8769.
  • 6Apel P C, Panaccione D G, Holden F R, Walton J D. Cloning and targeted gene disruption of XYLI, a 13-1, 4-xylanase from the maize pathogen Cochliobolus carbonum. Molecular Plant-Microbe Interactions, 1993, 6(4): 467-473.
  • 7Panagiotou G, Topakas E, Economou L, Kekos D, Macris B J, Christakopoulos P. Induction, purification, and characterization of two extracellular α-L-arabinofuranosidases from Fusarium oxysporum. Canadian Journal of Microbiology, 2003, 49(10): 639-644.
  • 8Rogers L, Flaishman M, Kolattukudy P. Cutinase gene disruption in Fusarium solani f sp. pisi decreases its virulence on pea. Plant Cell, 1994, 6: 935-945.
  • 9Cooper R M L D, Campbell A, Henry M, Lee P E. Enzymatic adaptation of cereal pathogens to the monocotyledonous primary cell wall. Physiological and Molecular Plant Pathology, 1988, 32: 33-47.
  • 10Dori S, Solel Z, Barash L. Cell wall-degrading enzymes produced by Gaeumannomyces graminis var. tritici in vitro and in vivo. Physiological and Molecular Plant Pathology, 1995, 46(3): 189-198.

同被引文献56

  • 1郑莉,杨金玲,朱平,程克棣.β-木糖苷酶的研究进展[J].浙江林业科技,2005,25(1):59-64. 被引量:15
  • 2吴雪昌,胡森杰,钱凯先.酵母HOG-MAPK途径[J].细胞生物学杂志,2005,27(3):247-252. 被引量:16
  • 3安泽伟,黄华.一种提取橡胶树叶中总DNA的方法[J].植物生理学通讯,2005,41(4):513-515. 被引量:66
  • 4陈丽,胡东维,陈美军,张敬泽.稻曲球及稻曲病菌菌落微结构的SEM观察[J].菌物学报,2007,26(1):89-96. 被引量:17
  • 5黄宗道,何康.热带北缘橡胶树栽培[M].广州:广东科技出版社,1987.
  • 6黄贵修.许灿光.中国天然橡胶病虫草害识别与防治[M].北京:中国农业出版社,2012.
  • 7Itai A,Ishihara K,Bewley D.Characterization ofexpression,and cloning,of β-d-xylosidase and α-L-arabinofuranosidase in developing and ripen-ing tomato(Lycopersicon esculentum Mill.)fruit[J].Exp Bot,2003,54:2615-2622.
  • 8Ronen R,Zauberman G, Akerman Mf et al.Xylanaseand xylosidase activities in avocado fruit[J].Plant Physiol,1991,95(3):961-964.
  • 9Minic Z,Rihouey C,Cao T Do,et al.Purifica-tion and characterization of enzymes exhibiting β-d-xylosidase activities in stem tissues of Arabidopsis[J].Plant Physiol,2004,135(2):867-878.
  • 10Yejun Han,Hongzhang Chen.A β-xylosidase fromcell wall of maize:Purification,properties andits use in hydrolysis of plant cell wall[J].Journal of Molecular Catalysis B:Enzymatic,2010,63(3-4):135-140.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部