期刊文献+

分数阶超混沌系统的线性广义同步观测器设计 被引量:7

LINEAR GENERALIZED SYNCHRONIZATION OBSERVER DESIGN OF THE FRACTIONAL HYPERCHAOTIC SYSTEM
下载PDF
导出
摘要 首先利用分数阶的常微分动力系统的稳定性理论,通过判断线性化后平衡点的稳定不变特性、辅助以分岔图分析等数值手段,给出了新近提出的改进型超混沌L櫣系统对应分数阶系统产生混沌现象的阶次参数范围;进一步,设计了一类广义线性同步观测器,该观测器的动力学行为能与原系统实现任意的线性关系的广义同步,而经典的完全同步、反相同步以及投影同步可以视为本文提出方法的特例.最后的数值仿真进一步证实了本文提出的观测器设计方案的有效性. Based on the stability theory of fractional ordinary differential equations, the fractional dynamics of the newly proposed Lti chaotic system was analyzed. The range of order parameter was given by judging the stability of the equilibrium of the locally linearized system and by using bifurcation graph analysis. Furthermore, a synchronization observer was designed for linear generalized synchronization of such a newly proposed nonlinear chaotic system,which has the dynamic behavior of realizing arbitrary linear generalized synchronization including classical complete synchronization, anti- synchronization ,projective synchronization as special cases with the original system. Finally, the numerical simulation verifies our results.
出处 《动力学与控制学报》 2009年第3期245-251,共7页 Journal of Dynamics and Control
基金 武汉科技学院青年基金(20073201) 武汉科技学院预研基金 湖北省自然科学基金2007ABA348 国家自然科学基金60574045部分资助的课题~~
关键词 分数阶微分方程 广义同步 观测器 超混沌系统 fractional ordinary differential equations, generalized synchronization, observer, hyperchaotic system
  • 相关文献

参考文献19

  • 1I Podlubny. Fractional differential equations. Academic Press, New York, 1999.
  • 2T T Hartley, C F Lorenzo, H K Qammer. Chaos in a fractional order Chua "s system. IEEE Trans. CAS - I, 1995 (42) :485 -490.
  • 3Ivo Petas. Method for simulation of the fractional order chaotic systems. Acta Montanistica Slovaca ,2006,11 (4) : 273-277.
  • 4W M Ahmad, J C Sprott. Chaos in fractional - order auton-omous nonlinear systems. Chaos, Solitons & Fractals, 2003,16:339 - 351.
  • 5胡岗,萧井华,郑志刚.混沌控制.上海:上海科技教育出版社,2002.
  • 6G Chen, X Yu. Chaos control: theory and applications, Springer - Verlag, Berlin, Germany,2003.
  • 7M S Tavazoei, M Haeri. Unreliability of frequency - domain approximation in recognising chaos in fractional - order systems, lET Signal Processing,2007,1 (4) :171 - 181.
  • 8M S Tavazoei, M Haeri. A necessary condition for double scroll attractor existence in fractional - order systems. Physics Letters A, 2007,367,1 - 2 (16) : 102 - 113.
  • 9M S Tavazoei, M Haeri. Chaos control via a simple fractional - order controller. Physics Letters A, 2008,372,6 (4) :798 - 807.
  • 10Guangyi Wang, Xun Zhang, Yan Zheng, Yuxia Li. A new modified hyperchaotic Lu system. Physica A, 2006,371 : 260 - 272.

二级参考文献36

  • 1高心,虞厥邦.Chaos and chaotic control in a fractional-order electronic oscillator[J].Chinese Physics B,2005,14(5):908-913. 被引量:14
  • 2I. Podlubny. Fractional Differential Equations [M]. Academic Press, New York, 1999.
  • 3T.T. Hartley, C.F. Lorenzo,' H.K. Qammer, Chaos in a fractional order Chua's system. IEEE Trans[Z]. CAS-I 42,1995.485-490.
  • 4Ivo Petra. Method for simulation of the fractional order chaotic systems[J]. Acta Montanistica Slovaca, 2006.11(4):273-277.
  • 5W.M. Ahmad, J.C. Sprott, Chaos in fractional order autonomous nonlinear systems[Z]. Chaos, Solitons & Fractals 16,2003.339-351.
  • 6G. Chen, X. Yu, Chaos Control: Theory and Applications[M].Springer Verlag, Berlin, Germany, 2003.
  • 7M. S. Tavazoei, M. Haeri, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems[J]. IET Signal Processing, 1(4), 2007.171-181.
  • 8M. S. Tavazoei, M. Baeri. A necessary condition for double scroll attractor existence in fractional-order systems[J]. Physics Letters A, 367,1-2(16), 2007.102-113.
  • 9M. S. Tavazoei, M. Haeri. Chaos control via a simple[Z].
  • 10fractional-order controller. Physics Letters A[J]. 2008, 372, 6(4) :798 -807.

共引文献20

同被引文献72

  • 1李建芬,李农.一种基于混沌调制的保密通信方法[J].空军工程大学学报(自然科学版),2002,3(1):52-55. 被引量:4
  • 2王杰智,陈增强,袁著祉.一个新的混沌系统及其性质研究[J].物理学报,2006,55(8):3956-3963. 被引量:54
  • 3Chen G R, Dong X N. , From chaos to order: methodologies, perspectives and applications. World Scientific Pub. Co., Singapore, 1998.
  • 4Wolf A, Swinney J B, Swinney H L, Vastano J A. Determining lyapunov exponents from a time series. Phys D, 1985,16:285 -317.
  • 5Li C P, Peng G J. Chaos in Chen's system with a fractional order. Chaos, Solitons Fractals, 2004, 22:443 - 50.
  • 6Diethelm K, Ford N J, Freed A D. A predictor- corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn,2002 ; 29 : 3 - 22.
  • 7刘杰,董鹏真,尚钢.分数阶非线性系统动力学分析中数值算法可靠性及其诱导的复杂现象.中国力学学会学术大会,2009.
  • 8Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990,64(8) :821 - 824.
  • 9Cai N, Jing Y W, Zhang S Y. Modified projective synchronization of chaotic systems with disturbances via active sliding mode control [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15 (6):1613- 1620.
  • 10Wang Z L. Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters [J]. Communications in Nonlinear Science and Numerical Simulation, 2009,14(5) :2366 - 2372.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部