摘要
首先利用分数阶的常微分动力系统的稳定性理论,通过判断线性化后平衡点的稳定不变特性、辅助以分岔图分析等数值手段,给出了新近提出的改进型超混沌L櫣系统对应分数阶系统产生混沌现象的阶次参数范围;进一步,设计了一类广义线性同步观测器,该观测器的动力学行为能与原系统实现任意的线性关系的广义同步,而经典的完全同步、反相同步以及投影同步可以视为本文提出方法的特例.最后的数值仿真进一步证实了本文提出的观测器设计方案的有效性.
Based on the stability theory of fractional ordinary differential equations, the fractional dynamics of the newly proposed Lti chaotic system was analyzed. The range of order parameter was given by judging the stability of the equilibrium of the locally linearized system and by using bifurcation graph analysis. Furthermore, a synchronization observer was designed for linear generalized synchronization of such a newly proposed nonlinear chaotic system,which has the dynamic behavior of realizing arbitrary linear generalized synchronization including classical complete synchronization, anti- synchronization ,projective synchronization as special cases with the original system. Finally, the numerical simulation verifies our results.
出处
《动力学与控制学报》
2009年第3期245-251,共7页
Journal of Dynamics and Control
基金
武汉科技学院青年基金(20073201)
武汉科技学院预研基金
湖北省自然科学基金2007ABA348
国家自然科学基金60574045部分资助的课题~~
关键词
分数阶微分方程
广义同步
观测器
超混沌系统
fractional ordinary differential equations, generalized synchronization, observer, hyperchaotic system