摘要
层状弹性材料包含垂直于界面有限裂纹时,可运用富里叶变换及引用位错密度函数,导出了反映裂纹尖端奇异性的奇异积分方程组,并使用Lobatochebyshev方法解此方程组,最后得到裂纹尖端应力强度因子.为检验方法的正确性,对某两层含裂实际结构进行了计算,结果是满意的.
The plane elasticity problem for layered elastic systems containing a finite crack perpendicular to the interface is considered. To derive the singular integral equations, the Fourier tansform in conjunction with dislocations density function is used. The singular integral equations is solved by the Lobatto Chebyshev method commonly applied to such problems. In order to examine the usefulness of the method described in this paper, a two layers structure of containing a cut parallel to thickness is considered.
出处
《固体力学学报》
CAS
CSCD
北大核心
1998年第2期148-155,共8页
Chinese Journal of Solid Mechanics
基金
国家自然科学基金
关键词
层状弹性结构
应力强度因子
裂纹
积分变换解
layered elastic structure, singular integral equation, stress intensity factor