期刊文献+

Symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates 被引量:7

Symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates
原文传递
导出
摘要 This paper discusses the symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates. Firstly, the definition and the criterion of the symmetry are given. Secondly, the condition under which there exists a conserved quantity and the form of the conserved quantity are obtained. Finally, an example is shown to illustrate the application of the results. This paper discusses the symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates. Firstly, the definition and the criterion of the symmetry are given. Secondly, the condition under which there exists a conserved quantity and the form of the conserved quantity are obtained. Finally, an example is shown to illustrate the application of the results.
机构地区 School of Science
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第8期3145-3149,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025) the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022) the Fund for Fundamental Research of Beijing Institute of Technology (Grant No 20070742005)
关键词 quasi-coordinate holonomic system symmetry of Lagrangians conserved quantity quasi-coordinate, holonomic system, symmetry of Lagrangians, conserved quantity
  • 相关文献

参考文献16

  • 1Zegzhda S A, Soltakhanov Sh Kh and Yushkov P M 2005 Equations of Motion of Nonholonomic Systems and Variational Principles of Mechanics, New Class Problems of Controls (Moscow: FIZMATLIT).
  • 2Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press).
  • 3Lutzky M 1979 J. Phys. A 12 973.
  • 4Zhang H B 2002 Chin. Phys. 11 1.
  • 5Fu J L and Chen L Q 2003 Phys. Lett. A 317 255.
  • 6Fang J H, Liao Y P and Peng Y 2004 Chin. Phys. 13 1620.
  • 7Xu X J, Mei F X and Zhang Y F 2006 Chin. Phys. 15 19.
  • 8Wang S Y and Mei F X 2002 Chin. Phys. 11 5.
  • 9Qiao Y F, Zhao S H and Li R J 2004 Chin. Phys. 13 292.
  • 10Wu H B 2005 Chin. Phys. 14 452.

同被引文献75

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部