期刊文献+

基于傅里叶变换红外光谱和siPLS-GA-PLS的水稻叶片氮素含量预测研究 被引量:12

DETERMINATION OF NITROGEN IN RICE LEAF BASED ON FTIR SPECTRA AND siPLS-GA-PLS ALGORITHM
下载PDF
导出
摘要 傅里叶变换中红外光谱谱区宽,搜索空间大,需要采用高效率和高质量的算法进行波长选择.敏感波段及其组合的选择是简化分析模型和提高模型预测精度的关键技术之一.本研究以水稻孕穗期叶片干样的中红外光谱透射率和叶片氮素含量为数据源,通过协同偏最小二乘算法(siPLS)从宽谱区中初选出波段范围1583.3-992.2cm^-1,再采用迭代遗传算法(GA)从中选出了84个水稻叶片氮素含量预测的敏感波段.研究结果显示以此敏感波段建立的偏最小二乘回归模型的预测均方根误差(RMSEP)和水稻叶片总氮含量的测量值与预测值之间的相关系数分别为0.1186和0.9120,该预测结果明显优于协同偏最小二乘法(siPLS)和光谱指数NFSA的预测结果,说明傅里叶变换红外光谱技术结合siPLS-GA-PLS算法能够实现水稻叶片氮素含量的预测. The Fourier transform mid-infrared (FT-MIR) spectra and nitrogen concentration were measured from dried leaves of rice in booting stage under various treatments of nitrogen fertilization. The synergy interval partial least square algorithm (si-PLS) combined with genetic algorithm (GA) was applied to the selection of optimal variables. 84 variables were determined to build the estimation model for leaf nitrogen content. The prediction accuracy of the PLS regression model based on these variables was better than that of the siPLS model or the model from spectral index NFSA. The RMSEP (root mean square error of prediction) is 0.1186 and r (correlation coefficient) is 0. 9120. The results show that FTIR spectra combined with siPLS-GA-PLS algorithm can be used successfully to analyze leaf nitrogen concentration of rice.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第4期277-280,共4页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(30571112) 国家高技术研究发展计划(2006AA10Z204) 国家博士后科学基金(20070421194)资助项目
  • 相关文献

参考文献8

  • 1Zhou Q, Sun S Q, Yu L, et al. Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis [ J ]. Journal of Molecular Structure,2006,799 : 77--84.
  • 2吴迪,曹芳,冯水娟,何勇.基于支持向量机算法的红外光谱技术在奶粉蛋白质含量快速检测中的应用[J].光谱学与光谱分析,2008,28(5):1071-1075. 被引量:28
  • 3Zhou Q F, Shen Z Q, Wang R H. Fourier transform infrared spectral difference of leaf tips in rice related to nitrogen fertilizer rates [ J ]. Acta Botanica Sinica, 2002,44 : 547-- 550.
  • 4Leardi R, Gonzalez A L. Genetic algorithm applied to feature selection in PLS regression: how and when to use them [ J ]. Chemometrics and Intelligent Laboratory Systems. 1998,41 : 195--207.
  • 5Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data set[ J]. Journal of Chemometrics, 2000,14:643--655.
  • 6Li L, Cheng Y B, Ustin S, et al. Retrieval of vegetation equivalent water thickness from reflectance using genetic algorithm ( GA ) -partial least squares ( PLS ) regression [ J ]. Advances in Space Research ,2008,41:1755--1763.
  • 7褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:567
  • 8Barnes R J, Dhanoa M S, Lister S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra [ J ]. Applied Spectroscopy, 1989,43 (5) : 772--777.

二级参考文献44

共引文献593

同被引文献134

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部