期刊文献+

基于Park变换和DRNN的定子绕组匝间故障诊断方法 被引量:3

Park Vector and DRNN based Detection Method for Stator Winding Turn Fault
下载PDF
导出
摘要 采用定子电流信号检测方法诊断三相交流电机定子绕组匝间短路故障时,会受到电网电压不对称和负载变化等因素的影响,为克服这一缺陷,提出了基于派克变换和对角递归神经网络(DRNN)的定子绕组匝间故障诊断方法.该方法根据派克变换得到三相电流派克矢量模的轨迹变化,通过频谱分析提取故障严重度特征因子.为进一步确定短路绕组的匝数,综合考虑负载、三相输入电压不平衡度的变化情况,构建基于DRNN的短路匝数诊断模型.根据此方法,构建了试验系统并进行了匝间短路试验,试验结果证明:基于Park变换和DRNN的诊断方法,不但在稳态工况下可精确确定定子绕组短路故障的严重度及匝数,而且在电机启动、负载、电压不平衡动态变化时,取得比前馈神经网络(FFNN)故障诊断模型更好的诊断结果. Voltage unbalance and load changes influence the current signals for diagnosing interturn short circuit in stator winding of three phase induction motors. To solve this problem, a park vector and diagonal recurrent neural network (DRNN) based detection method for stator winding turn fault was presented. When inter-turn short circuit occurred in the stator winding of three phase induction motors, the current park vector module would change and serious .faults would appear. In order to detect inter-turns accurately, the fault factor was drawn by spectrum analysis and a model which took load and three phase voltage unbalance into considera- tion was constructed based on DRNN. Experiment results have shown that the Park Vector and DRNN based detection method determines the shorted turns exactly in different operating states and is more effective than the feed-forward neural network(FFNN) based detection model when motor starts up and voltage unbalance and load changes.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第8期43-47,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(50677014) 湖南省科技计划资助项目(2008GK3044)
关键词 定子绕组 匝间短路 PARK矢量 对角递归神经网络 诊断模型 stator windings inter-turn short circuit Park vector DRNN diagnosis model
  • 相关文献

参考文献10

  • 1刘慧开,杨立,孙丰瑞.异步电动机定子绕组槽内匝间短路早期故障的表面温升[J].电工技术学报,2007,22(3):49-54. 被引量:16
  • 2YEH C C, SIZO V G Y. A reconfigurable motor for experimental emulation of stator winding interturn and broken bar faults in polyphase induction rnachines[J ]. IEEE Transactions on Energy Conversion, 2008,23(4) : 1005 - 1014.
  • 3张建文,姚奇,朱宁辉,杨丽,鲁庆.异步电动机定子绕组的故障诊断方法[J].高电压技术,2007,33(6):114-117. 被引量:20
  • 4TALLAM R M, STONE G C. A survey of methods for detection of stator-related faults in induction machines[J ]. IEEE Trans Ind Appl, 2007,43(4) :920 - 933.
  • 5SU H, CHONG K T. Induction machine condition monitoring using neural network modding[J]. IEEE Transactions on Industrial Electronics, 2007,54 (1) : 241 - 249.
  • 6ZIDANI F, BENBOUZID M E H. Induction motor stator faults diagnosis by a current ooncordia pattern based fuzzy decision system[J]. IEEE Transactions on Energy Conversion,2003,18(4) : 469 - 475.
  • 7SERGIO M A, CRUZ A J, MARQUES C. Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended park's vector approach[J ]. IEEE Transactions on Industry Applications, 2001,37(5) : 1227 - 1233.
  • 8KU C C, LEE K Y. Diagonal recurrent neural networks for dynamic system control [ J ]. IEEE Transactions on Neural Networks, 1995,6(1 ) : 144 - 156.
  • 9KU C C, LEE K Y. Diagonal recurrent neural networks for nonlinear system control[C]//International Joint Conference on Neural Networks. Seattle, WA, USA: IEEE, 1992 : 315 - 320.
  • 10胡玉玲,曹建国.基于模糊神经网络的动态非线性系统辨识研究[J].系统仿真学报,2007,19(3):560-562. 被引量:23

二级参考文献30

  • 1许伯强,李和明,孙丽玲,王永宁.异步电动机定子绕组匝间短路故障检测方法研究[J].中国电机工程学报,2004,24(7):177-182. 被引量:53
  • 2马宏忠,李训铭,方瑞明,黄允凯,胡虔生.利用失电残余电压诊断异步电机转子绕组故障[J].中国电机工程学报,2004,24(7):183-187. 被引量:31
  • 3徐春梅,尔联洁,刘金琨.动态模糊神经网络及其快速自调整学习算法[J].控制与决策,2005,20(2):226-229. 被引量:16
  • 4王步来.中小型电机匝间短路的探讨[J].中小型电机,1996,23(3):48-49. 被引量:3
  • 5李士勇.模糊控制,神经网络和智能控制[M].哈尔滨:哈尔滨工业大学出版社,1998.
  • 6Wang Ying-Chung,Chiang-Ju Chien,Ching-Cheng Teng.Takagi-Sugeno Recurrent Fuzzy Neural Networks for Identification and Control of Dynamic Systems[J].IEEE International Fuzzy System Conference (S7803-5748),2001,537-540.
  • 7Paris A Mastorocostas,John B Theocharis.A Recurrent Fuzzy-Neural Model for Dynamic System Identification[J].IEEE Transactions on Systems (S1083-4419),2002,32(2):176-190.
  • 8Yu Wen,Li Xiaoou.Fuzzy Identification Using Fuzzy Neural Networks With Stable Learning Algorithms[J].IEEE Trans on Fuzzy Systems (S1063-6706),2004,12(3):411-420.
  • 9Lee Ching-Hung,Lai Wei-Yu.A TSK-Ttype Fuzzy Neural Network (TFNN)for Dynamic Systems Identification[J].IEEE Processings of Decision and Control (S7803-7924),2003,12(3):4002-4007.
  • 10IAS Motor Reliability Working Group.Report of large motor reliability survey of industrial and commercial installations (PartⅠ~Ⅱ)[J].IEEE Transactions on Industry Applications,1985,21(4):853-872.

共引文献54

同被引文献31

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部