期刊文献+

小波包熵和BP神经网络在意识任务识别中的应用 被引量:3

APPLYING WAVELET PACKET ENTROPY AND BP NEURAL NETWORKS IN RECOGNITION OF MENTAL TASKS
下载PDF
导出
摘要 探索了小波包崎和BP神经网络在识别左右手想象运动中的作用。采用脑一机接口2003竞赛中Graz科技大学提供的脑电数据,计算C3、C4电极8~16Hz频带脑电信号的小波包墒,将其作为反应想象左右手运动的特征量,用BP神经网络对大脑想象左右手运动任务进行分类,最大分类正确率可达88.57%,与使用线性判别式算法分类结果相比,效果更好。脑电信号小波包熵随时间的变化与事件相关去同步和事件相关同步现象相一致,可在线识别左右手想象运动,为大脑运动意识任务的特征提取及肢残患者的临床康复提供了新思路。 It is to explore the role of BP neural network and wavelet packet entropy ( WPE ) in recognition of left and right hands imagination movements. The WPEs of C3 and C4 electrodes between 8-16Hz were calculated respectively using the data of Graz University of Technology provided in BCI Competition 2003, and were defined as the feature vector reacting to the left and right hands' motions imagined. The left and right hands motor imaginary tasks were classified by BP neural network, the satisfactory results were obtained with the highest classification accuracy of 88.57% ,it is better than the classification using linear discriminant algorithm. The WPE of EEG changing with time was coincident with event-related desynchronization and event-related synchronization. The left and right hands motor imaginary tasks could be recog- nized on line, and this provides new approaches for exacting the feature of brain motor consciousness tasks and for the clinical rehabilitation of the disabled patients.
作者 任亚莉
出处 《计算机应用与软件》 CSCD 2009年第8期78-81,共4页 Computer Applications and Software
基金 甘肃省高等学校研究生导师科研项目计划(0710-05)
关键词 脑电信号 特征提取 小波包熵 BP神经网络 分类 electroencephalogram (EEG) Feature extraction Wavelet packet entropy BP neural network Classification
  • 相关文献

参考文献13

  • 1Vaughan TM.Guest editorial brain-computer interface technology:a review of the second international meeting.IEEE Trans.Neural Syst Rehabil,2003,11(2):94-109.
  • 2Curran E A,Stokes M J.Learning to control brain activity:A review of the production and control of EEG components for driving brain-computer intertace systems.Brain Cogn,2003,51(3):326-336.
  • 3Sykacek P,Roberts S J,Stokes M.Adaptive BCI based on variational Bayesian Kalman filtering:An empirical evaluation.IEEE Trans Biomed Eng,2004,51(5):719-727.
  • 4Deng J,He B.Classification of imaginary tasks from three vhannels of EEG by using an artificial neural network.Proc.of the 25th Annual International Conference of the IEEE/EMBs.Cancun Mexico:IEEE,2003,3:2289-2291.
  • 5李坤,褚蕾蕾,朱世东,吴小培.基于mu节律能量的运动意识分类研究[J].计算机技术与发展,2006,16(8):157-159. 被引量:18
  • 6张爱华,赵予晗.相同步及支持向量机在意识任务识别中的应用[J].甘肃科学学报,2006,18(3):59-63. 被引量:7
  • 7吴小培,叶中付.基于脑电四阶累积量的运动意识分类研究[J].生物物理学报,2005,21(5):364-370. 被引量:11
  • 8裴晓梅,郑崇勋,宾光宇.基于多通道脑电特征运动意识任务的分类[J].西安交通大学学报,2005,39(8):904-907. 被引量:10
  • 9chlgl A,Lugger K,Pfurtscheller G.Using Adaptive Autoregressive Parameters for a brain-computer-interface experiment.Proceedings of the 19th Annual International Conference IEEE/EMBS,1997,4:1533-1535.
  • 10Pfurtscheller G,Neuper C,Schlgl A,et al.Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters.IEEE Trans Rehabil Eng,1998,6(3):316-325.

二级参考文献33

  • 1Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002, 113(6): 767-791.
  • 2Pfurtscheller G, Muller G R, Pfurtscheller J. 'Thought'-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia [J]. Neuroscience Letters, 2003, 351(1):22-36.
  • 3Schlogl A, Lugger K, Pfurtscheller G. Using adaptive autoregressive parameters for a brain-computer-interface experiment [A]. The 19th Annual International Conference IEEE/EMBS, Chicago,USA,1997.
  • 4Pfurtscheller G, Neuper C, Flotzinger D, et al. EEG-based discrimination between imagination of right and left hand movement [J]. Electroencephalography and Clinical Neurophysiology, 1997, 103(6): 642-651.
  • 5Wackermann J. Towards a quantitative characterization of functional states of the brain: from the non-linear methodology to the global linear description [J]. Int J Psychophysiol, 1999, 34(1): 65-80.
  • 6Pfurtscheller G, da Silva Lopes F H. Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clinical Neurophysiology, 1999, 110(11):1 842-1 857.
  • 7Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates [J]. International Journal of Psychophysiology, 2001, 43(1): 41-58.
  • 8Andrew C, Pfurtscheller G. Event-related coherence as a tool for studying dynamic interaction of brain regions [J]. Electroencephalography and clinical Neurophysiology, 1996, 98(2): 144-148.
  • 9Schlogl A, Neuper C, Pfurtscheller G. Estimating the mutual information of an EEG-based brain-computerinterface [J]. Biomedizinische Technik, 2002, 47(1-2): 3-8.
  • 10边肇祺.模式识别[M].北京:清华大学出版社,1998..

共引文献25

同被引文献36

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部