期刊文献+

一种PDE图像分解去噪模型及算法 被引量:8

A Decomposition and Denoising Model and Algorithm Based on PDE
下载PDF
导出
摘要 通过分析ROF(Rudin,Osherand Fatemi)模型和LLT(lysaker,lundervold and Tai)模型在处理噪声图像时存在的缺陷,以及纹理部分和噪声部分之间的差异,将图像分解思想和ROF模型与LLT模型相结合,提出了一种新的分解去噪模型:DD(decomposition and denoising)模型。该模型在处理噪声图像时,将噪声图像分解为结构、纹理和噪声3部分,从而达到既去噪又能分解的目的。进一步通过仿真试验,验证了DD模型和算法的合理性及有效性。 Through analysis shortcoming of the ROF( Rodin, Osher and Fatemi) model and LLT( Lysaker, Lundervold and Tai) model in denoising processing, and the difference between texture and noise, combining decomposition model, TV-norm and fourth-order PDE, the article proposes the DD ( decomposition and denoising ) model. When processing noise image, the new model decompose an noisy image into three parts, structure, texture and noise, and thas achieves denoising and decomposition. Further through the experiments,we testify rationality and validity of the DD model and the algorithm.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第8期1547-1552,共6页 Journal of Image and Graphics
基金 国家科学委员会与中国工程物理研究院联合基金项目(10576013) 河南省自然科学基金项目(0611053200)
关键词 图像分解 图像去噪 结构 纹理 噪声 image decomposition, image denoising, structure, texture, noise
  • 相关文献

参考文献13

  • 1Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithm [ J]. Physica D, 1992,60 (2) : 259-268.
  • 2Alexander M E, Baumgartner R, Summers A R, et al. A waveletbased method for improving signal-to-noise ratio and contrast in MR images [ J ]. Magnetic Resonance Imaging, 2000,18 ( 2 ) : 169-180.
  • 3Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM Journal on Numerical Analysis, 1992, 29(1) : 182-193.
  • 4Chambolle A. Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations [ J ]. SIAM Journal on Applied Mathematics, 1995,55 ( 3 ) :827-863.
  • 5Chambolle A, Lions P. Image recovery via total variation minimization and related problems[ J ]. Numerische Matematik, 1997,76(2) : 167-188.
  • 6Chan T, Marquina A, Mulet P. High-order total variation-based image restoration [ J ]. SIAM Journal on Scientific Computing, 2000, 22(2) : 503-516.
  • 7You Y L, Kaveh M. Fourth-order partial differential equations for noise removal[ J ]. IEEE Transations on Image Processing, 2000,9 (10) : 1723-1730.
  • 8Lysaker M, Lundervold A, Tal X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[ J]. IEEE Transactions on Image Processing, 2003, 12(12): 1579-1590.
  • 9Acar R, Vogel C R. Analysis of bounded variation penalty methods for ill-posed problem [ J ]. Inverse Problem, 1994,10 ( 6 ) : 1217-1229.
  • 10Vese L. A Study in the BV space of a denosing-deblurring variationl problem [ J]. Applied Mathematics and Optimization, 2001,44 ( 2 ) : 131-161.

同被引文献74

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部