期刊文献+

基于组件的石化过程智能建模与优化系统的设计与开发 被引量:1

Design and development of intelligent modeling and optimization system for petrochemical process based on component
原文传递
导出
摘要 世界各国的经验表明,流程模拟、先进控制与过程优化技术是提高企业经济效益的主要技术手段之一。因此设计开发1个基于生产数据驱动的智能化实用数据处理、建模与优化集成的系统具有重要的实用价值。本文采用组件化程序设计方法,设计了1系列具有良好的可重用性、语言无关性、高度开放性的软件组件,开发了1个集成数据处理、建模和优化相关技术的软件系统,实现了适用于石化过程的建模与优化系统,并在实际企业应用取得社会与经济效益。 Experiences from various countries all over the world show that process simulation, advanced control and process optimization technologies are among the main technical means for promoting the beneficial efficiency in enterprises. Thereby, there will be of great value to design and develop an intelligent integrated system based on data-driven, including data processing, modeling and optimization. In this study, by using the component programming, a series of software components are designed with good reusability, langnage-irrelevant and high open-performance, a software system is developed by integrating data processing, modeling and optimization, a modeling and optimization system is realized that is suitable for petrochemical process, and the social and economic benefits are obtained from the actual application in the enterprise.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2009年第8期979-984,共6页 Computers and Applied Chemistry
基金 国家自然科学基金(60774079) 国家高技术研究发展计划(863)(2006AA04Z184)
关键词 组件 智能建模 优化 component, modeling, optimization
  • 相关文献

参考文献15

二级参考文献84

共引文献392

同被引文献15

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C].IEEE Int Conf on Neural Networks.Perth,1995:1942-1948.
  • 2Zhao S Z,Liang J J,Suganthan P N.Dynamic multi-swarmparticle swarm optimizer with local search for large scaleglobal optimization[C].Proc of 2008 IEEE Congress onEvolutionary Computation.Hong Kong:IEEE Press,2008:3845-3852.
  • 3Fan S S,Zahara E.A hybrid simplex search and particleswarm optimization for unconstrained optimization[J].European J of Operational Research,2007,181(2):527-548.
  • 4Chang Y P.Integration of SQP and PSO for optimalplanning of harmonic filters[J].Expert Systems withApplications,2010,37(3):2522-2530.
  • 5He Y Y,Zhou J Z,Xiang X Q,et al.Comparison ofdifferent chaotic maps in particle swarm optimizationalgorithm for long-term cascaded hydroelectric systemscheduling[J].Chaos,Solitons and Fractals,2009,42(5):510-518.
  • 6Xiang T,Liao X F,Wong K W.An improved particle swarmoptimization algorithm combined with piecewise linearchaotic map[J].Applied Mathematics and Computation,2007,190(2):1637-1645.
  • 7Zhao X C.A perturbed particle swarm algorithm fornumerical optimization[J].Applied Soft Computing,2010,10(1):119–124.
  • 8May R.Simple mathematical models with verycomplicated dynamics[J].Nature,1976,261(5560):459-467.
  • 9Wilson R B.A simplicial algorithm for concaveprogramming[D].Boston:Graduate School of BusinessAdministration,Harvard University,1963.
  • 10Fletcher R.Practical methods of optimization[M].NewYork:Wiley,1987:304-316.

引证文献1

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部