摘要
四边形第一类和第二类面积坐标(QAC-Ⅰ和QAC-Ⅱ)分别被提出以后,又提出了第三类面积坐标(QAC-Ⅲ),它不仅保留了QAC-Ⅰ和QAC-Ⅱ的主要优点,而且具有其他一些优异特性。该文应用第三类四边形面积坐标(QAC-Ⅲ),构造出一个含内参的四结点四边形膜元,记为QACⅢ-Q6元。这个新单元有以下优点:1)与Wilson的Q6元相比,新单元具有计算精度高,对网格畸变不敏感的优点;2)与基于QAC-Ⅰ和基于QAC-Ⅱ的Q6元相比,新单元不仅具有同样优异的单元性能,而且其推导方法更为简明,其形函数更为简洁。
With the first version and second version of quadrilateral area coordinate method (QAC-Ⅰ and QAC-Ⅱ) developed, the third version of quadrilateral area coordinate method (QAC-Ⅲ) is proposed, which, except for retaining main advantages of QAC-Ⅰ and QAC-Ⅱ, owns some other distinguishing features. In this paper, QAC-Ⅲ is used to formulate a new 4-node membrane element with internal parameters, denoted as element QACIII-Q6. This new element exhibits the following advantages: 1) compared with Wilson's element Q6, this new element possesses high accuracy and is insensitive to mesh distortion. 2) this new element has comparable performance to the Q6 elements formulated by QAC-Ⅰ and QAC-Ⅱ, moreover, the procedure in formulation is simple, and the expression for the shape function matrix is concise.
出处
《工程力学》
EI
CSCD
北大核心
2009年第8期1-5,共5页
Engineering Mechanics
关键词
有限元
四边形膜元
第三类面积坐标
位移函数
网格畸变
finite element
quadrilateral membrane element
the third version of area coordinate
displacement function
mesh distortio