期刊文献+

一种高温细菌葡聚糖磷酸化酶基因的克隆与表达 被引量:2

Clone and Overexpression of a Novel Thermostable Glucan Phosphorylase from a Thermophilic Bacterium
下载PDF
导出
摘要 葡聚糖磷酸化酶(GlgP)在生物体的糖代谢过程中具有中心地位的作用。腾冲嗜热厌氧杆菌(Thermo-anaerobacter tengcongensis MB4T=AS.1.2430T=JCM11007T)分离自云南腾冲的温泉,其最适生长温度为75℃。为研究腾冲嗜热厌氧杆菌的葡聚糖磷酸化酶(Tte-GlgP)的性质,试验以T.tengcongensis MB4T的全基因组为模板,通过PCR扩增得到MB4T中的编码GlgP的基因(glgp),将其克隆到表达载体pET23b上,经过PCR验证、酶切验证和测序验证正确后,转化到宿主细胞大肠杆菌BL21DE3中,成功得到了表达。通过SDS-PAGE电泳分析得到其分子量约为64ku,与预期的结果一致。试验为Tte-GlgP性质的进一步研究和应用构建了基因工程菌株。 Glucan phosphorylase plays a central role in sugar metabolism processing of organism. A novel glucan phosphorylase (Tte-GlgP) from Thermoanaerobacter tengcongensis which was separated from hot spring of Yunnan Tengcong, and its optimum growth temperature is 75℃, was studied in this paper. To characterize the Tte-GlgP, the glgP gene was obtained by polymerase chain reaction (PCR) and was cloned into pET23b. After the colne was validated to be properly constructed by PCR, restrictive enzymes digestions and sequencing methods, it was transformed into E. coli BL21 DE3, and was overexpressed. The high-level expression of Tte-GlgP was confirmed by SDS-PAGE analysis. The Tte-GlgP was a soluble protein, and is about 64 ku as expected.
作者 陈世琼
出处 《食品与发酵工业》 CAS CSCD 北大核心 2009年第7期40-43,共4页 Food and Fermentation Industries
关键词 腾冲嗜热厌氧杆菌 葡聚糖磷酸化酶 克隆 表达 Therrnoanaerobacter tengcongensis, glucan phosphorylase, cloning overexpression
  • 相关文献

参考文献22

  • 1Newgard CB, Hwang PK, Fletterick RJ. The family of glycogen phosphorylases: structure and function[ J]. Crit Rev Biochem Mol Biol,1989,24( 1 ) :69 -99.
  • 2Schinzel R, Nidetzky B. Bacterial alpha-glucan phosphorylases[J]. FEMS Microbiol Lett, 1999, 171 (2):73- 79.
  • 3Schinzel R, Palm D. Escherichia coli mahodextrin phosphorylase: contribution of active site residues glutamate - 637 and tyrosine -538 to the phosphorolytic cleavage of alphaglucans [ J ]. Biochemistry, 1990, 29 (42) :9 956 - 9 962.
  • 4Fujio Yu, Yale Jen, Eriko Takenchi, et al. a-Glucan Phosphorylse from Escherichia coli[ J]. The Journal of Biological Chemistry,1988, 263(27) : 13 706 - 13 711.
  • 5Seok YJ, Sondej M, Badawi P, et al. High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr[J] . J Biol Chem,1997, 272(42) :26 511 -26 521.
  • 6Weinhausel A, Griessler R, Krebs A, et al. alpha-1,4-D- gluean phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering[ J]. Eur J Biochem, 1997, 326 ( Pt 3) :773 -783.
  • 7Griessler R, D'Auria S, Tanfani F, et al. Thermal denaturation pathway of starch phosphorylase from Corynebacterium callunae : oxyanion binding provides the glue that efficiently stabilizes the dimer structure of the protein [ J ]. Protein Sci,2000, 9(6):1 149-1 161.
  • 8Griessler R, Schwarz A, Mucha J, et al. , Tracking interactions that stabilize the dimer structure of starch phosphorylase from Corynebacterium callunae[ J ]. Eur J Biochem, 2003, 270(10):2 126-2 136.
  • 9Nidetzky B, Griessler R, Francesco-Maria Pierfederici, et al. Mutagenesis of the Dimer Interface Region of Corynebacterium callunae Starch Phosphorylase Perturbs the Phosphate-Dependent Conformational Relay that Enhances Oligomeric Stability of the Enzyme[ J]. J Biochem, 2003, 134 (4) :599 -606.
  • 10Griessler R, Psik B, Schwarz A, et al. Relationships between structure, function and stability for pyridoxal 5 '- phosphate-dependent starch phosphorylase from Corynebacterium caUunae as revealed by reversible cofactor dissociation studies[J]. Eur J Biochem, 2004, 271 (16) : 3 319-3 329.

同被引文献18

  • 1NEWGARD C B, HWANG P K, FLETTERICK R J. The family of glycogen phosphorylases: structure and function[J]. Crit Rev Biochem Mol Biol, 1989, 24(1): 69-99.
  • 2SCHINZEL R, NIDETZKY B. Bacterial alpha-glucan phosphorylases [J]. FEMS Microbiol Lett, 1999, 171(2): 73-79.
  • 3GRIESSLER R, SCHWARZ A, MUCHA J, et al. Tracking interactions that stabilize the dimer structure of starch phosphorylase from Corynebacterium callunae[J]. Eur J Biochem, 2003, 270(10): 2126-2136.
  • 4SCHWARZ A, PIERFEDERICI F M, NIDETZKY B. Catalytic mechanism of alpha-retaining glucosyl transfer by Corynebacterium callunae starch phosphorylase: the role of histidine-334 examined through kinetic characterization of site-directed mutants[J]. Biochem J, 2005, 387(2): 437-445.
  • 5BAO Q, TIAN Y, LI W, et al. A complete sequence of the T. tengcongensis genome[J]. Genome Res, 2002, 12(5): 689-700.
  • 6KITAMOTO Y, AHASHI H, TANAKA H, et al. a-Glucose-1-phosphate formation by a novel trehalose phosphorylase from Flammulina velutipes[J]. FEMS Microbiol Lett, 1988, 552: 147-149.
  • 7SCHIRALDI C, di LERNIA I, de ROSA M. Trehalose production: exploiting novel approaches[J]. Trends Biotechnol, 2002, 20(10): 420- 425.
  • 8SINGER M A, LINDQUIST S. Multiple effects of trehalose on protein folding in vitro and in vivo[J]. Mol Cell, 1998, 1(5): 639-648.
  • 9ELBEIN A D, PAN Y T, PASTUSZAK I, et al. New insights on trehalose: a multifunctional molecule[J]. Glycobiology, 2003, 13(4): 17-27.
  • 10ZEA C J, POHL N L. Kinetic and substrate binding analysis of phosphorylase b via electrospray ionization mass spectrometry: a model for chemical proteomics of sugar phosphorylases[J]. Anal Biochem, 2004, 327(1): 107-113.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部