期刊文献+

基于GMRES和Tikhonov正则化的生物电阻抗图像重建算法 被引量:5

A Hybrid Reconstruction Method in Electrical Impedance Tomography Based on GMRES and Tikhonov Regularization
原文传递
导出
摘要 电阻抗层析成像(Electrical impedance tomography,EIT)是利用被测物体场内部电导率分布不均匀性,通过边界注入电流,测量边界电压变化,重构被测场内电导率分布图像。由于EIT测量数据有限,场域存在严重的非线性,导致问题的欠定性。我们介绍了一种新的组合算法,利用GMRES算法生成Krylov子空间,并结合Tik-honov正则化方法进行图像重建。该算法不仅改善了实时性,而且提高了成像质量及鲁棒性。 Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution of measured field owing to its characteristics of being non-homogeneous, of injecting current at the boundary of the measured subject,of measuring the corresponding changes in voltage, and of reconstructing the image of the subject consequently. However, the limited measurement data of EIT, and the serious nonlinearity of the field result in illposed problem, and the resolution of reconstructed image is poor. To solve the problem, a new hybrid algorithm is herein proposed. The method combines the characteristics of Krylov subspace and Tikhonov regularization, which can improve the real time performance, the quality and robustness of reconstructed image.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2009年第4期701-705,共5页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60532020 50337020 60472077 60301008) 国家科技部支撑计划项目资助(2006BAI03A00)
关键词 电阻抗层析成像 TIKHONOV正则化 KRYLOV子空间 组合算法 Electrical impedance tomography(EIT) Tikhonov regularization Krylov subspace Hybrid algorithm
  • 相关文献

参考文献11

  • 1COHEN-BACRIE C, GOUSSARD Y and GUARDO R. Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint[J]. Medical Imaging, IEEE Transactions on 1997, 16(5) : 562-571.
  • 2BARBER D C and BROWN B H. Applied potential tomography[J]. J Phys E: Sci Instrum, 1984, 17:723-733.
  • 3WANG H X, WANG C and YIN W L. A pre-iteration method for the inverse problem in electrical impedance tomography [J]. Instrumentation and Measurement. IEEE Transactions on, 2004, 53(4): 1093-1096.
  • 4YANG W Q and PENG L H. Image reconstruction algorithms for electrical capacitance tomography[J]. Meas Sci Technol, 2003, 14: R1-R13.
  • 5VAUHKONEN M, VADASZ D, KARJALAINEN P A, et al. Tikhonov regularization and prior information in electrical impedance tomography[J]. Medical Imaging, IEEE Transactions on 1998, 17(2): 285-293.
  • 6SAAD Y and SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. Society for Industry and Applied Mathematics, 1986, 7(3) :856-869.
  • 7VAUHKONEN M. Electrical impedance tomography and prior information[D]. (PhD) Finland: University of Kuopio, 1997..50-64.
  • 8GESELOWITZ D B. An application of electrocaidiographic lead theory to impedance plethysmography[J]. IEEE Trans Bioned Eng, 1971, 18(1):38-41.
  • 9HANSEN P C. Discrete inverse problems insight and algorithms. A tutorial with matlab exercises, in informatics and mathematical modeiling[D]. Denmark: Technical University of Denmark, Denmark. 2005:61-72.
  • 10JACOBSEN M. Modular regularization algorithms [D]. (PhD) Denmark: Technical University of Denmark, 2004 : 7- 24.

同被引文献57

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部